Description Usage Arguments Details Value Author(s) References Examples
Plot a kernel graph do check the value distribution in your data.
1 |
Data_melt |
A melted dataframe from your Data and Design. You should use the RC_melt function to create this or directly the reshape2::melt function. |
color1 |
A feature from your Design to split the different shade of your distribution. |
vertical1 |
A value to plot a vertical line at the desired threshold. |
log2 |
if TRUE then the value in the column value of the melted dataframe are log2ged. Set to TRUE by default. |
PLot a kenel density graph after performing a log2+1 transfo to check the value distribution. In RNA-Seq this is useful to check the background noise and define a threshold value. Using the color1 option let you see if there are different distribution related to a specific feature. This not desired if yes ...
return a graph object.
Benjamin Vittrant
https://en.wikipedia.org/wiki/Kernel_density_estimation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
RC_kernel = function(Data_melt, color1, vertical1, Title, log2 = TRUE){
# Log2 the value
if(log2 == TRUE){Data_melt$value = log2(Data_melt$value+1) }
# kernel plot
p = ggplot(Data_melt, aes(value)) +
geom_density(aes_string(fill = color1), alpha = 0.1) +
theme(legend.position="right", legend.text=element_text(size=5)) +
geom_vline(xintercept = vertical1, linetype="dashed", size = 0.3) +
labs(x = Title)
# The function will return:
return(p)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.