#' influenza vaccination 65 or older
#'
#' Percentage of fee-for-service (FFS) Medicare enrollees that had an annual flu vaccination. Collected in 2017.
#' @docType data
#' @source \href{https://data.cms.gov/mapping-medicare-disparities}{Data.CMS.gov}
#' @details \href{https://www.cms.gov/About-CMS/Agency-Information/OMH/Downloads/Mapping-Technical-Documentation.pdf}{Center for Medicare and Medicaid Services} and NORC at the University of Chicago.
#' @return tibble wotj `fl_65` indicating the percentage of fee-for-service (FFS) Medicare enrollees that had an annual flu vaccination
#' @usage data(us_fl65)
"us_fl65"
#' hospital beds
#'
#' beds of each hospital by county (2019).
#' @docType data
#' @source \href{https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/data?page=18}{Homeland Infrastructure Foundation-Level Data}
#' @return a tibble
#' @usage data(us_hospbeds)
"us_hospbeds"
#' household composition
#'
#' Several metrics regarding household composition from the American Community Survey of 2018
#' @docType data
#' @source \href{https://data.census.gov/cedsci/table?q=United%20States}{American Community Survey tables}
#' @details \href{https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2018_ACSSubjectDefinitions.pdf?#}{Subject Definitions}
#' @return a tibble
#' @usage data(us_acm_househ)
"us_acm_househ"
#' age and sex
#'
#' Sex and age composition of the county population from the American Community Survey of 2018
#' @docType data
#' @source \href{https://data.census.gov/cedsci/table?q=United%20States}{American Community Survey tables}
#' @return a tibble
#' @usage data(us_dem)
"us_dem"
#' poverty
#'
#' Household living below the poverty level, divided by age and race and calculate as absolute value or percentage. American Community Survey of 2018
#' @docType data
#' @source \href{https://data.census.gov/cedsci/table?q=United%20States}{American Community Survey tables}
#' @details \href{https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2018_ACSSubjectDefinitions.pdf?#}{Subject Definitions of the American Community Survey}
#' @return a tibble
#' @usage data(us_poverty)
"us_poverty"
#' mapping medicare disparities
#'
#' Prevalence of many medical and chronic conditions, 2017. From relative documentation listed below: "Prevalence rates are calculated by searching for certain diagnosis codes in Medicare
#' beneficiaries’ claims. The prevalence rate of a condition for a specific sub-population
#' (e.g., all beneficiaries in a county) is the proportion of beneficiaries who are found to have the condition. The admission rate by admission type is the frequency of a specific type of inpatient admission
#' per 1,000 inpatient admissions in a year."
#' @docType data
#' @source \href{https://data.cms.gov/mapping-medicare-disparities}{Mapping Medicare Disparities}
#' @return a tibble
#' @details Details regarding the use of the webtool can be found in the relative
#' \href{https://www.cms.gov/About-CMS/Agency-Information/OMH/Downloads/Mapping-Technical-Documentation.pdf}{documentation}. It includes prevalence of
#' \itemize{
#' \item Alzheimer
#' \item chronic kidney
#' \item obesity,
#' \item depression
#' \item obstructive pulmonary
#' \item disease
#' \item arthritis
#' \item diabetes
#' \item osteoporosis
#' \item asthma
#' \item atrial
#' \item fibrillation
#' \item ischemic hearth,
#' \item myocardial infarction
#' \item hypertension
#' \item several type of cancer
#' \item emergency, medical admissions, annual visits
#' \item pneumoccocal vaccine
#' \item tabacco use
#' }
#' @usage data(us_mmd)
#' @seealso \code{\link{getus_all}} for more details regarding the variables
"us_mmd"
#' race
#'
#' Estimate population of each county by race. American Community Survey of 2018
#' @docType data
#' @source \href{https://data.census.gov/cedsci/table?q=United%20States}{American Community Survey tables}
#' @details \href{https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2018_ACSSubjectDefinitions.pdf?#}{Subject Definitions of the American Community Survey}
#' @return a tibble
#' @usage data(us_race)
"us_race"
#' particulate 2.5
#'
#' Emission of pm2.5 in micro g/m3 per county from 2000 to 2016
#' @docType data
#' @source \href{http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.NA.02.MAPLE}{Atmoshpheric Composition Analysis Group},
#' \href{https://github.com/wxwx1993/PM_COVID/blob/master/Data/county_pm25.csv}{wxwk1993 processed data}
#' @details \href{https://github.com/wxwx1993/PM_COVID/blob/master/additional_preprocessing_code/download_pm25_values.md}{Ista Zahn and Ben Sabath repo}
#' @return a tibble
#' @usage data(us_pm2.5)
"us_pm2.5"
#' us_netinc
#'
#' Median Household income, 2018
#' @docType data
#' @source \href{http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.NA.02.MAPLE}{Atmoshpheric Composition Analysis Group},
#' @source \href{https://data.census.gov/cedsci/table?q=United%20States}{American Community Survey tables}
#' @details \href{https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2018_ACSSubjectDefinitions.pdf?#}{Subject Definitions of the American Community Survey}
#' @return a tibble
#' @usage data(us_netinc)
"us_netinc"
#' seasonal temperature and humidity
#'
#' Seasonal temperature and humidity
#' @docType data
#' @source \href{http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.NA.02.MAPLE}{Atmoshpheric Composition Analysis Group},
#' \href{https://github.com/wxwx1993/PM_COVID/blob/master/Data/county_pm25.csv}{wxwk1993 processed data}
#' @details \href{https://raw.githubusercontent.com/wxwx1993/PM_COVID/master/Data/temp_seasonal_county.csv}{Ista Zahn and Ben Sabath repo}
#' @return a tibble
#' @usage data(us_season)
"us_season"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.