estimate_one_timecourse_params_tf: Estimate One Timecourses Parameters

estimate_one_timecourse_params_tfR Documentation

Estimate One Timecourses Parameters

Description

Estimate One Timecourses Parameters

Usage

estimate_one_timecourse_params_tf(
  one_timecourse,
  a_tc_id,
  use_prior,
  n_initializations,
  model,
  prior_pars = NULL,
  fit_intercept = FALSE,
  learning_rate = 0.1,
  n_iterations = 100,
  verbose = FALSE
)

Arguments

one_timecourse

dynamics of a single timecourse including time and abundance variables

a_tc_id

timecourse id for the timecourse being fit

use_prior

If FALSE, fit least squares. If TRUE, add priors for a MAP estimate.

n_initializations

Number of initializations to use for each timecourse.

model

model to fit:

sigmoid

one sigmoidal response

impulse

two sigmoidal responses

prior_pars

Named numeric vector of parameters to use for priors (if use_prior is TRUE)

v_sd

Gaussian SD of assymptotes (v_inter and v_final)

rate_shape

Shape of rate Gamma

rate_scale

Scale of rate Gamma

time_shape

Shape of t_rise and t_fall - t_rise Gamma

time_scale

Scale of t_rise and t_fall - t_rise Gamma

fit_intercept

If TRUE, the intercept will be fit, if FALSE, the intercept will be constrainted to zero

learning_rate

learning rate for the Adams optimizer

n_iterations

the number of iterations to run the optimizer

verbose

if TRUE then print additional information


calico/impulse documentation built on June 4, 2024, 5:28 a.m.