temporal_PCA: Temporal PCA

Description Usage Arguments Value

View source: R/temporal_PCA.R

Description

A function that transforms a data with lag values to a format where multiplication with eigenvectors of temporal covariance is possible. Then multiplicates with the eigenvectors matrix and returns the dimension-reduced data.

Usage

1
temporal_PCA(data, lags, features, ev, n)

Arguments

data

data with lag values. Columnnames must be of format (featurename)_(lag) (e.g. ne_lag3, nw_lead1, se)

lags

list of lags to be used. Same as create_lagged() argument

features

list of feature names without lag/lead additions

ev

the temporal eigenvector matrix

n

represents how many Principal Components to be returned

Value

Time dimension reduced data. (e.g. ne_Time1, sw_Time2)


canhakan/canhakan1 documentation built on Dec. 19, 2021, 1:48 p.m.