Description Usage Arguments Details Value Author(s) References Examples
Fit model distribution to a set of observations.
1 2 3 4 5 | fitNormal(y, p)
fitLognormal(y, p)
fitPareto(y, p)
fitExponential(y, p)
fitWeibull(y, p)
|
y |
Vector of one-dimensional nonnegative data |
p |
Corresponding quantile values |
The function sorts the values of y and uses (log)linear regression to fit the values between the pmin and pmax quantile to the cdf of a model distribution.
R2 |
R-squared value for the fit |
lamda |
(exponential only) Estimated location (and spread) parameter for f(y)=λ*exp(-λ * y) |
mu |
(lognormal only) Estimated {\sf E}(\ln(y)) for lognormal distribution |
sigma |
(lognormal only) Estimated Var(ln(y)) for lognormal distribution |
ym |
(pareto only) Estimated location parameter (mode) for pareto distribution |
alpha |
(pareto only) Estimated spread parameter for pareto distribution |
k |
(weibull only) estimated power parameter k for weibull distribution |
lambda |
(weibull only) estimated scaling parameter λ for weibull distribution |
Mark van der Loo, see www.markvanderloo.eu
M.P.J. van der Loo, Distribution based outlier detection for univariate data. Discussion paper 10003, Statistics Netherlands, The Hague (2010). Available from www.markvanderloo.eu or www.cbs.nl.
1 2 | y = 10^rnorm(50);
L <- getOutliers(y,rho=0.5);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.