estimateEffect: Estimate Effect after matching

View source: R/estimateEffect.R

estimateEffectR Documentation

Estimate Effect after matching

Description

Estimate Effect after matching

Usage

estimateEffect(
  out,
  mode = "continuous",
  multiple = TRUE,
  dep = "",
  time = "",
  status = "",
  covarCentering = FALSE,
  withinSubclass = FALSE,
  digits = 2,
  sedigits = 2,
  pdigits = 4,
  se = TRUE,
  print = TRUE
)

Arguments

out

An object of class "matchit"

mode

One of c("continuous","binary","survival")

multiple

logical Whether or not perform multiple regression

dep

Name of dependent variable

time

Name of time variable

status

Name of status variable

covarCentering

logical

withinSubclass

logical

digits

integer indicating the number of decimal places

sedigits

digits for standard error

pdigits

digits for p value

se

logical If true, report se. If false report confidence interval

print

logical

Examples

library(MatchIt)
library(survival)
out <- matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = exData)
estimateEffect(out,dep=c("Y_C"),multiple=FALSE)
estimateEffect(out,dep=c("Y_C"))
estimateEffect(out,dep=c("Y_C","Y_B"))
estimateEffect(out,mode="binary",dep=c("Y_B"),multiple=FALSE)
estimateEffect(out,mode="binary",dep=c("Y_B"))
estimateEffect(out,mode="survival",dep=c("Y_S"),multiple=FALSE)
estimateEffect(out,mode="survival",dep=c("Y_S"))
## Not run: 
out=matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = exData,
   link = 'linear.logit', caliper = .1, ratio = 3, replace = TRUE)
estimateEffect(out,dep=c("Y_C"),multiple=FALSE)
estimateEffect(out,dep=c("Y_C"))
estimateEffect(out,mode="binary",dep=c("Y_B"),multiple=FALSE)
estimateEffect(out,mode="binary",dep=c("Y_B"))
estimateEffect(out,mode="survival",dep=c("Y_S"),multiple=FALSE)
estimateEffect(out,mode="survival",dep=c("Y_S"))
out=matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = exData,
method = "full", estimand = "ATE")
estimateEffect(out,dep=c("Y_C"),multiple=FALSE)
estimateEffect(out,dep=c("Y_C"),covarCentering=TRUE)
estimateEffect(out,mode="binary",dep=c("Y_B"),multiple=FALSE)
estimateEffect(out,mode="survival",dep=c("Y_S"),multiple=FALSE)
out=matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = exData,
method = "subclass", estimand = "ATT",subclass = 8)
estimateEffect(out,dep=c("Y_C"),multiple=FALSE)
estimateEffect(out,dep=c("Y_C"),multiple=FALSE,withinSubclass=TRUE)
estimateEffect(out,mode="binary",dep=c("Y_B"),multiple=FALSE)
estimateEffect(out,mode="binary",dep=c("Y_B"))
estimateEffect(out,mode="survival",dep=c("Y_S"),multiple=FALSE)
out=matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = exData,
method = "full", estimand = "ATT")
estimateEffect(out,mode="binary",dep=c("Y_B"))
estimateEffect(out,mode="continuous",dep=c("Y_B"))  # for conditional effect
out=matchit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = swData,
method = "full", estimand = "ATE",s.weights="SW")
estimateEffect(out,dep=c("Y_C"))
x=matchit(treat ~ age + educ + race + married+nodegree + re74 + re75, data =lalonde,
   method="exact")
estimateEffect(x,dep=c("re78"))
data(GBSG2,package="TH.data")
out=matchit(horTh~age+menostat+tsize+tgrade+pnodes+progrec+estrec,data=GBSG2)
estimateEffect(out,mode="binary",dep="cens")
estimateEffect(out,mode="survival",dep="cens",time="time",status="cens")

## End(Not run)

cardiomoon/webrPSM documentation built on Feb. 2, 2024, 3:55 a.m.