The goal of MISL (Multiple Imputation by Super Learning) is to create
multiply imputed datasets using the super learning framework. This
package builds heavily off of the sl3
and mice
packages.
This method has been accepted for publication in Statistical Methods in Medical Research. A link to the publication is forthcoming.
The MISL algorithm is not yet available on CRAN; instead, please use the development version available here on Github. To download the development version use:
install.packages("devtools")
devtools::install_github("carpenitoThomas/misl")
If you find any issues with this software or would like to make a request, please do so by filing an issue.
Here’s an example with abalone data in which we use misl()
imputation
and then pool the results:
library(misl)
set.seed(123)
misl_imp <- misl(abalone, maxit = 10, m = 10, quiet = TRUE,
con_method = c("Lrnr_glm_fast", "Lrnr_earth", "Lrnr_ranger"),
bin_method = c("Lrnr_earth", "Lrnr_glm_fast", "Lrnr_ranger"),
cat_method = c("Lrnr_independent_binomial", "Lrnr_ranger"))
misl_modeling <- lapply(misl_imp, function(y){
stats::lm(Whole_Weight ~ Sex + Length + Diameter + Height + Older_12, data = y$datasets)
})
summary(mice::pool(misl_modeling), conf.int = TRUE)
#> term estimate std.error statistic df p.value
#> 1 (Intercept) -0.9917138520 0.017134443 -57.87838125 889.35930 0.000000e+00
#> 2 SexI -0.0426686559 0.009137655 -4.66954137 135.62160 7.174625e-06
#> 3 SexM 0.0002759165 0.007257143 0.03801998 174.92055 9.697151e-01
#> 4 Length 1.3620546956 0.206252463 6.60382269 30.35273 2.469290e-07
#> 5 Diameter 2.2108707044 0.250137186 8.83863267 32.66127 3.547722e-10
#> 6 Height 1.4354390562 0.138282429 10.38048769 101.74196 0.000000e+00
#> 7 Older_12 0.0474856116 0.008259594 5.74914621 45.01115 7.343897e-07
#> 2.5 % 97.5 %
#> 1 -1.02534251 -0.95808519
#> 2 -0.06073938 -0.02459794
#> 3 -0.01404692 0.01459875
#> 4 0.94103615 1.78307325
#> 5 1.70176219 2.71997922
#> 6 1.16114816 1.70972995
#> 7 0.03085005 0.06412117
We can also look at the traceplot of the imputations as well:
misl::trace_plot(misl_imp)
© 2021-2022 Thomas Carpenito, Justin Manjourides
The contents of this repository are distributed under the GPL-3 license.
See file LICENSE
for details.
Carpenito, Thomas and Manjourides, Justin. “MISL: Multiple Imputation by Super Learning.” Statistical Methods in Medical Research, In Press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.