copulaFitPlot | R Documentation |
Visualization Copula fitting
copulaFitPlot(object, ...) ## S4 method for signature 'CopulaObj' copulaFitPlot(object)
object |
Copula Object |
... |
Additional parameters that may or may not be used |
library(cascsim) #Prepare pseudo observation data library(copula) dist1<-new("Pareto",p1=20,p2=3) dist2<-new("Normal",p1=5,p2=3,min=0,max=20,truncated=TRUE) dist3<-new("Lognormal",p1=2,p2=1,min=0,max=100,truncated=TRUE) normal.cop <- normalCopula(c(0.6, 0.36, 0.6), dim=3, dispstr="un") x <- rCopula(1000, normal.cop) x[,1]<-Quantile(dist1,x[,1]) x[,2]<-Quantile(dist2,x[,2]) x[,3]<-Quantile(dist3,x[,3]) #Create Copula Object and Fit it to observation data without goodness of fit test nom.cop <- new("CopulaObj", param=c(0.5,0.5,0.5),marginal=list(dist1=dist1,dist2=dist2,dist3=dist3), dimension=3,observation=x,fittest=FALSE) nom.cop <- copulaFit(nom.cop) copulaFitPlot(nom.cop) #Create Copula Object and Fit it to observation data with goodness of fit test clayton.cop <- claytonCopula(c(3), dim=2) x <- rCopula(1000, clayton.cop) x[,1]<-Quantile(dist1,x[,1]) x[,2]<-Quantile(dist2,x[,2]) cla.cop <- new("CopulaObj", type="clayton",param=c(3),marginal=list(dist1=dist1,dist2=dist2), dimension=2,observation=x,fittest=TRUE) cla.cop <- copulaFit(cla.cop) copulaFitPlot(cla.cop)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.