# derived monthly broadscale data
cat('Sourcing Derived_Monthly_Broadscale.R', sep = '\n')
library(dplyr)
library(tidyr)
library(readr)
library(usethis)
library(RCurl)
library(rvest)
# # get river flux data
# cat(' reading in river flux data', sep = '\n')
#
# webpage <- read_html("https://ogsl.ca/app-debits/en/tables.html")
#
# tbls <- html_nodes(webpage, "table")
# tbls_ls <- webpage %>%
# html_nodes("table") %>%
# html_table(fill = TRUE)
#
# # remove model predictions
# curr_year <- format(Sys.Date(), '%Y')
#
# idx <- vector()
# for (i in 1:length(tbls_ls)){
# names(tbls_ls)[[i]] <- unique(names(tbls_ls[[i]]))
# names(tbls_ls[[i]]) <- c('month', 'river_flux')
# tbls_ls[[i]] <- tbls_ls[[i]][-1,]
# tbls_ls[[i]] <- tbls_ls[[i]] %>% dplyr::mutate(year = names(tbls_ls)[[i]])
# if(names(tbls_ls)[[i]] > curr_year){
# idx <- c(idx, i)
# }
# }
#
# data_tbls <- tbls_ls[-idx]
#
# df <- do.call('rbind', data_tbls)
# rownames(df) <- NULL
# df$year <- as.numeric(df$year)
#
# river_flux <- df %>%
# dplyr::mutate(area = 'Gulf of St. Lawrence')
#
# # assemble data
# Derived_Monthly_Broadscale <- dplyr::bind_rows(river_flux)
# temporary code
con <- url("ftp://ftp.dfo-mpo.gc.ca/AZMP_Maritimes/azmpdata/data/River_Flux/River_Flux_Data.csv")
Derived_Monthly_Broadscale <- read_csv(con)
# end - temporary code
# save data
# save data to csv
readr::write_csv(Derived_Monthly_Broadscale, "inst/extdata/csv/Derived_Monthly_Broadscale.csv")
# save data to rda
usethis::use_data(Derived_Monthly_Broadscale, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.