| guided_pcp | R Documentation | 
Draws a parallel coordinate plot, with an accompanying barchart showing an index (eg correlation, scagnostics) levels for each panel. An index legend is optional.
guided_pcp(data, edgew=NULL, path = NULL, pathw=NULL,zoom=NULL,pcpfn=pcp,
     pcp.col = 1,lwd=0.5, panel.colors=NULL, pcp.mar=c(1.5,2,2,2), pcp.scale=TRUE,
     bar.col=1:9,bar.axes=FALSE, bar.mar=NULL,bar.ylim=NULL, reorder.weights=TRUE,
    layout.heights=NULL, layout.widths=c(10,1),
     main=NULL,legend=FALSE,cex.legend = 1,legend.mar=c(1,4,1,1),...)
     
| data | A data frame or matrix. | 
| edgew | Matrix (or vector) whose rows give index values for each pair of variables. | 
| path | an index vector specifying variable order, or a function. If a function,  | 
| pathw | Matrix (or vector) whose rows give index values for each adjacent pair of variables in path. Usually this argument is NULL and  | 
| zoom | If provided, a numeric vector specifying a subsequence of path to display. | 
| pcpfn | Function to draw the parallel coordinates. | 
| pcp.col | Line colors. | 
| lwd | Line widths. | 
| panel.colors | Background panel colors, passed to the | 
| pcp.mar | Controls PCP margin size. | 
| pcp.scale | If TRUE, the variables will be scaled to 0-1 range, otherwise the data is not scaled. | 
| bar.col | Bar colors. | 
| bar.axes | Draw barplot axes, if TRUE. | 
| bar.mar | Controls barplot margin size. | 
| bar.ylim | Vertical limits of bar plot. | 
| reorder.weights | If TRUE, reorder barplot indices so large values are drawn at the bottom. | 
| layout.heights | Controls the layout. | 
| layout.widths | Controls the layout. | 
| main | Main title for PCP. | 
| legend | If TRUE, draws the barplot index legend. | 
| cex.legend | Controls legend text size. | 
| legend.mar | Legend margin size. | 
| ... | Optional arguments | 
C.B. Hurley and R.W. Oldford
see overview
pcp,catpcp
	 			
require(PairViz) 			
data <- mtcars[,c(1,3:6)]
cols <- c("red","green")[mtcars[,9]+1 ]    # transmission type, red=automatic
# add a correlation guide and find "better" hamiltonians...
# add a correlation guide...
corw <- dist2edge(as.dist(cor(data)))
edgew <- cbind(corw*(corw>0), corw*(corw<0))
         
# add a correlation guide to a PCP, positive cors shown in blue, negative in purple...
## Not run: 
dev.new(width=3,height=3)
par(cex.axis=.65)
guided_pcp(data,edgew, pcp.col=cols,
         main="Correlation guided PCP",bar.col = c("blue","purple"))
dev.new(width=7,height=3)
par(cex.axis=.65)
guided_pcp(data,edgew, path=eulerian, pcp.col=cols,lwd=2,
         main="Correlation guided Eulerian PCP",bar.col = c("blue","purple"),bar.axes=TRUE)
## End(Not run)
# Scagnostic guides are useful here- see the demos for more examples.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.