The goal of taxadb
is to provide fast, consistent access to taxonomic data, supporting common tasks such as resolving taxonomic names to identifiers, looking up higher classification ranks of given species, or returning a list of all species below a given rank. These tasks are particularly common when synthesizing data across large species assemblies, such as combining occurrence records with trait records.
Existing approaches to these problems typically rely on web APIs, which can make them impractical for work with large numbers of species or in more complex pipelines. Queries and returned formats also differ across the different taxonomic authorities, making tasks that query multiple authorities particularly complex. taxadb
creates a local database of most readily available taxonomic authorities, each of which is transformed into consistent, standard, and researcher-friendly tabular formats.
To get started, install the development version directly from GitHub:
devtools::install_github("ropensci/taxadb")
library(taxadb) library(dplyr) # Used to illustrate how a typical workflow combines nicely with `dplyr`
Create a local copy of the Catalogue of Life (2018) database:
td_create("col") #> Importing 2019_common_col.tsv.bz2 in 100000 line chunks: #> [-] chunk 2 [\] chunk 3 [|] chunk 4 [/] chunk 5 ...Done! (in 9.042107 secs)
Read in the species list used by the Breeding Bird Survey:
bbs_species_list <- system.file("extdata/bbs.tsv", package="taxadb") bbs <- read.delim(bbs_species_list)
Two core functions are get_ids()
and get_names()
. These functions take a vector of names or ids (respectively), and return a vector of ids or names (respectively). For instance, we can use this to attempt to resolve all the bird names in the Breeding Bird Survey against the Catalogue of Life:
birds <- bbs %>% select(species) %>% mutate(id = get_ids(species, "col")) head(birds, 10) #> species id #> 1 Dendrocygna autumnalis COL:35517330 #> 2 Dendrocygna bicolor COL:35517332 #> 3 Anser canagicus COL:35517329 #> 4 Anser caerulescens COL:35517325 #> 5 Chen caerulescens (blue form) <NA> #> 6 Anser rossii COL:35517328 #> 7 Anser albifrons COL:35517308 #> 8 Branta bernicla COL:35517301 #> 9 Branta bernicla nigricans COL:35537100 #> 10 Branta hutchinsii COL:35536445
Note that some names cannot be resolved to an identifier. This can occur because of miss-spellings, non-standard formatting, or the use of a synonym not recognized by the naming provider. Names that cannot be uniquely resolved because they are known synonyms of multiple different species will also return NA
. The filter_name
filtering functions can help us resolve this last case (see below).
get_ids()
returns the IDs of accepted names, that is dwc:AcceptedNameUsageID
s. We can resolve the IDs into accepted names:
birds %>% mutate(accepted_name = get_names(id, "col")) %>% head() #> species id accepted_name #> 1 Dendrocygna autumnalis COL:35517330 Tringa flavipes #> 2 Dendrocygna bicolor COL:35517332 Picoides dorsalis #> 3 Anser canagicus COL:35517329 Setophaga castanea #> 4 Anser caerulescens COL:35517325 Bombycilla cedrorum #> 5 Chen caerulescens (blue form) <NA> Icteria virens #> 6 Anser rossii COL:35517328 Somateria mollissima
This illustrates that some of our names, e.g. Dendrocygna bicolor are accepted in the Catalogue of Life, while others, Anser canagicus are known synonyms of a different accepted name: Chen canagica. Resolving synonyms and accepted names to identifiers helps us avoid the possible miss-matches we could have when the same species is known by two different names.
Local access to taxonomic data tables lets us do much more than look up names and ids. A family of filter_*
functions in taxadb
help us work directly with subsets of the taxonomic data. As we noted above, this can be useful in resolving certain ambiguous names.
For instance, Trochalopteron henrici gucenense does not resolve to an identifier in ITIS:
get_ids("Trochalopteron henrici gucenense") #> [1] NA
Using filter_name()
, we find this is because the name resolves not to zero matches, but to more than one match:
filter_name("Trochalopteron henrici gucenense") #> # A tibble: 2 x 17 #> sort taxonID scientificName taxonRank acceptedNameUsa… taxonomicStatus update_date kingdom phylum class order family genus #> <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> #> 1 1 ITIS:9… Trochaloptero… subspeci… ITIS:916117 synonym <NA> Animal… Chord… Aves Pass… Leiot… Troc… #> 2 1 ITIS:9… Trochaloptero… subspeci… ITIS:916116 synonym <NA> Animal… Chord… Aves Pass… Leiot… Troc… #> # … with 4 more variables: specificEpithet <chr>, vernacularName <chr>, infraspecificEpithet <chr>, input <chr>
filter_name("Trochalopteron henrici gucenense") %>% mutate(acceptedNameUsage = get_names(acceptedNameUsageID)) %>% select(scientificName, taxonomicStatus, acceptedNameUsage, acceptedNameUsageID) #> # A tibble: 2 x 4 #> scientificName taxonomicStatus acceptedNameUsage acceptedNameUsageID #> <chr> <chr> <chr> <chr> #> 1 Trochalopteron henrici gucenense synonym Trochalopteron henrici ITIS:916117 #> 2 Trochalopteron henrici gucenense synonym Trochalopteron elliotii ITIS:916116
Similar functions filter_id
, filter_rank
, and filter_common
take IDs, scientific ranks, or common names, respectively. Here, we can get taxonomic data on all bird names in the Catalogue of Life:
filter_rank(name = "Aves", rank = "class", provider = "col") #> # A tibble: 35,398 x 21 #> sort taxonID scientificName acceptedNameUsa… taxonomicStatus taxonRank kingdom phylum class order family genus #> <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> #> 1 1 COL:35… Sturnella mag… COL:35520416 accepted species Animal… Chord… Aves Pass… Icter… Stur… #> 2 1 COL:35… Tauraco porph… COL:35530219 accepted infraspe… Animal… Chord… Aves Muso… Musop… Taur… #> 3 1 COL:35… Pyroderus scu… COL:35534370 accepted infraspe… Animal… Chord… Aves Pass… Cotin… Pyro… #> 4 1 COL:35… Dromaius minor COL:35552206 synonym infraspe… Animal… Chord… Aves Casu… Droma… Drom… #> 5 1 COL:35… Lepidocolapte… COL:35525495 accepted species Animal… Chord… Aves Pass… Furna… Lepi… #> 6 1 COL:35… Casuarius pap… COL:35552204 synonym infraspe… Animal… Chord… Aves Casu… Casua… Casu… #> 7 1 COL:35… Forpus modest… COL:35536431 accepted species Animal… Chord… Aves Psit… Psitt… Forp… #> 8 1 COL:35… Pterocnemia p… COL:35552203 synonym infraspe… Animal… Chord… Aves Rhei… Rheid… Rhea #> 9 1 COL:35… Ceyx lepidus … COL:35532279 accepted infraspe… Animal… Chord… Aves Cora… Alced… Ceyx #> 10 1 COL:35… Rhea tarapace… COL:35552202 synonym infraspe… Animal… Chord… Aves Rhei… Rheid… Rhea #> # … with 35,388 more rows, and 9 more variables: specificEpithet <chr>, infraspecificEpithet <chr>, taxonConceptID <chr>, #> # isExtinct <chr>, nameAccordingTo <chr>, namePublishedIn <chr>, scientificNameAuthorship <chr>, vernacularName <chr>, #> # input <chr>
Combining these with dplyr
functions can make it easy to explore this data: for instance, which families have the most species?
filter_rank(name = "Aves", rank = "class", provider = "col") %>% filter(taxonomicStatus == "accepted", taxonRank=="species") %>% group_by(family) %>% count(sort = TRUE) %>% head() #> # A tibble: 6 x 2 #> # Groups: family [6] #> family n #> <chr> <int> #> 1 Tyrannidae 401 #> 2 Thraupidae 374 #> 3 Psittacidae 370 #> 4 Trochilidae 338 #> 5 Muscicapidae 314 #> 6 Columbidae 312
filter_*
functions by default return in-memory data frames. Because they are filtering functions, they return a subset of the full data which matches a given query (names, ids, ranks, etc), so the returned data.frames are smaller than the full record of a naming provider. Working directly with the SQL connection to the MonetDBLite database gives us access to all the data. The taxa_tbl()
function provides this connection:
taxa_tbl("col") #> # Source: table<2019_dwc_col> [?? x 19] #> # Database: duckdb_connection #> taxonID scientificName acceptedNameUsa… taxonomicStatus taxonRank kingdom phylum class order family genus specificEpithet #> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> #> 1 COL:31… Limacoccus br… COL:316423 accepted species Animal… Arthr… Inse… Hemi… Beeso… Lima… brasiliensis #> 2 COL:31… Coccus bromel… COL:316424 accepted species Animal… Arthr… Inse… Hemi… Cocci… Cocc… bromeliae #> 3 COL:31… Apiomorpha po… COL:316425 accepted species Animal… Arthr… Inse… Hemi… Erioc… Apio… pomaphora #> 4 COL:31… Eriococcus ch… COL:316441 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… chaoticus #> 5 COL:31… Eriococcus ch… COL:316442 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… chathamensis #> 6 COL:31… Eriococcus ch… COL:316443 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… chilensis #> 7 COL:31… Eriococcus ci… COL:316444 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… cingulatus #> 8 COL:31… Eriococcus ci… COL:316445 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… cistacearum #> 9 COL:31… Eriococcus bu… COL:316447 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… busariae #> 10 COL:31… Eriococcus au… COL:316450 accepted species Animal… Arthr… Inse… Hemi… Erioc… Erio… australis #> # … with more rows, and 7 more variables: infraspecificEpithet <chr>, taxonConceptID <chr>, isExtinct <chr>, #> # nameAccordingTo <chr>, namePublishedIn <chr>, scientificNameAuthorship <chr>, vernacularName <chr>
We can still use most familiar dplyr
verbs to perform common tasks. For instance: which species has the most known synonyms?
taxa_tbl("col") %>% count(acceptedNameUsageID, sort=TRUE) #> # Source: lazy query [?? x 2] #> # Database: duckdb_connection #> # Ordered by: desc(n) #> acceptedNameUsageID n #> <chr> <dbl> #> 1 COL:43082445 456 #> 2 COL:43081989 373 #> 3 COL:43124375 329 #> 4 COL:43353659 328 #> 5 COL:43223150 322 #> 6 COL:43337824 307 #> 7 COL:43124158 302 #> 8 COL:43081973 296 #> 9 COL:43333057 253 #> 10 COL:23162697 252 #> # … with more rows
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.