braycir: Bayesian analysis of Rapid A-Ci response curves using Stan

Description Usage Arguments Value See Also Examples

View source: R/braycir.R

A-Ci

response curves using Stan

Description

Fit a single RACiR curve

Usage

1
2
braycir(data, empty, chains = 1, iter = 2000, warmup = floor(iter/2),
  thin = 1, cores = getOption("mc.cores", 1L), ...)

Arguments

data

An object of class racir containing data for all model variables.

empty

An object of class empty containing data from empty chamber to correct response data.

chains

Number of Markov chains (defaults to 1).

iter

Number of total iterations per chains (including warmup; defaults to 2000).

warmup

A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter / 2.

thin

Thinning rate. Must be a positive integer. Set thin > 1 to save memory and computation time if iter is large.

cores

Number of cores to use when executing the chains in parallel (defaults to 1). Use detectCores to detect number of CPU cores on the current host.

...

Additional arguments passed to stan.

Value

An object of class racirfit

See Also

stan

Examples

1

cdmuir/bayCi documentation built on Jan. 19, 2020, 12:27 a.m.