knitr::opts_chunk$set(eval = TRUE) options(width = 100)
library(KESER) library(wordcloud)
Load the depression data into R.
dir <- "https://github.com/celehs/KESER/raw/master/rdata/" data <- readRDS(url(paste0(dir, "depression.rds"), "rb")) dict <- readRDS(url(paste0(dir, "dictionary.rds"), "rb"))
Feature Selection with Embeddings from Partners Healthcare
set.seed(123) system.time(loc.fit.RPDR <- loc.feature.selection( data$X_full_lst[[1]], data$Y_full_lst[[1]], data$X_train_lst[[1]], data$Y_train_lst[[1]], data$X_valid_lst[[1]], data$Y_valid_lst[[1]], alpha = 1, lambda_lst = NULL, up_rate = 10, drop_rate = 0.5, cos_cut = 0.1, add.ridge = TRUE)) results.RPDR <- merge(loc.fit.RPDR$results, dict, all.x = TRUE) results.RPDR
wordcloud(words = results.RPDR$description, freq = round(as.numeric(results.RPDR$coef) * 100), random.order = FALSE, colors = brewer.pal(8, "Dark2"), # scale = c(4, 0.2), rot.per = 0)
Feature Selection with Embeddings from Veteran Affairs (VA)
set.seed(123) system.time(loc.fit.VA <- loc.feature.selection( data$X_full_lst[[2]], data$Y_full_lst[[2]], data$X_train_lst[[2]], data$Y_train_lst[[2]], data$X_valid_lst[[2]], data$Y_valid_lst[[2]], alpha = 1, lambda_lst = NULL, up_rate = 10, drop_rate = 0.5, cos_cut = 0.1, add.ridge = TRUE)) results.VA <- merge(loc.fit.VA$results, dict, all.x = TRUE) results.VA
wordcloud(words = results.VA$description, freq = round(as.numeric(results.VA$coef) * 100), random.order = FALSE, colors = brewer.pal(8, "Dark2"), # scale = c(4, 0.2), rot.per = 0)
proc.time()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.