####### load data ########
setwd('/Users/liumolei/Desktop/Research/cooccurance/')
source('function_for_ming.R')
load('data_now_use/data_embedding/data_example_depression.rda')
library(gglasso)
library(glmnet)
library(MASS)
library(openxlsx)
# Input cannot have columns with only 0 or just 1 single value.
# So I add some code to delete the 0 columns, this needs not be used for depression.
"
for (t in 1:2) {
X_f <- X_full_lst[[t]]
X_t <- X_train_lst[[t]]
use_set <- intersect(which(colMeans(X_f^2) > 1e-8),
which(colMeans(X_t^2) > 1e-8))
X_full_lst[[t]] <- X_f[,use_set]
X_train_lst[[t]] <- X_t[,use_set]
X_valid_lst[[t]] <- X_valid_lst[[t]][,use_set]
}
"
loc.fit.RPDR <- loc.feature.selection(X_full_lst[[1]], Y_full_lst[[1]],
X_train_lst[[1]], Y_train_lst[[1]],
X_valid_lst[[1]], Y_valid_lst[[1]],
alpha = 1, lambda_lst = NULL, up_rate = 10,
drop_rate = 0.5, cos_cut = 0.1, add.ridge = T)
loc.fit.VA <- loc.feature.selection(X_full_lst[[2]], Y_full_lst[[2]],
X_train_lst[[2]], Y_train_lst[[2]],
X_valid_lst[[2]], Y_valid_lst[[2]],
alpha = 1, lambda_lst = NULL, up_rate = 10,
drop_rate = 0.5, cos_cut = 0.1, add.ridge = T)
int.fit.results.fast <- int.feature.selection.fast(X_full_lst[c(1,2)], Y_full_lst[c(1,2)], X_train_lst[c(1,2)],
Y_train_lst[c(1,2)], X_valid_lst[c(1,2)], Y_valid_lst[c(1,2)],
lambda_lst = NULL, add.ridge = T)
int.fit.results.fast$min.beta
which(int.fit.results.fast$min.beta[[1]] != 0)
which(int.fit.results.fast$min.beta[[2]] != 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.