This package re-implements the first step of the {MASTA} package to extract features from longitudinal encounter records. Compared to {MASTA}, the input data of {IFPCA} is more compact and memory efficent. Click HERE to view input data structure.
Load the package into R.
library(MASTA) library(data.table)
url <- "https://raw.githubusercontent.com/celehs/IFPCA/master/data-raw/" follow_up_train <- fread(paste0(url, "follow_up_train.csv"))[1:1000] follow_up_train <- fread(paste0(url, "follow_up_train.csv"))[1:600] #---- labeled data only follow_up_valid <- fread(paste0(url, "follow_up_valid.csv")) fu_train <- follow_up_train$fu_time fu_valid <- follow_up_valid$fu_time names(fu_train) <- follow_up_train$id names(fu_valid) <- follow_up_valid$id #--- the number of longitudinal codes number_of_codes = 3 D=list() for (i in 1:number_of_codes){ time_code <- fread(paste0(url, "time_code",i,".csv")) time <- time_code$month names(time) <- time_code$id idx = names(time) %in% c(names(fu_train),names(fu_valid)) D[[i]]=time[idx] }
TrainFt = c() ValidFt = c() TrainPK = c() ValidPK = c() TrainN = c() ValidN = c() for (i in 1:length(D)){ time=D[[i]] ans <- ifpca(time, fu_train, fu_valid) #--- create an object for fitting -- Ft_name = colnames(ans$TrainFt) ; Ft_name = paste0(Ft_name,i) ; Ft_name ; colnames(ans$TrainFt) = Ft_name TrainFt = cbind(TrainFt,ans$TrainFt) Ft_name = colnames(ans$ValidFt) ; Ft_name = paste0(Ft_name,i) ; Ft_name ; colnames(ans$ValidFt) = Ft_name ValidFt = cbind(ValidFt, ans$ValidFt) TrainPK = cbind(TrainPK, ans$TrainPK) ValidPK = cbind(ValidPK, ans$ValidPK) if(i ==1 ){ TrainN = ans$TrainN ; ValidN = ans$ValidN ;} if(i !=1 ){ TrainN = cbind(TrainN, ans$TrainN[,2]) ValidN = cbind(ValidN, ans$ValidN[,2]) } } colnames(TrainPK)=colnames(ValidPK) = paste0("pred",1:length(D)) colnames(TrainN)=colnames(ValidN) = c("id",paste0("pred",1:length(D),"_total")) Z=list() Z$TrainFt = TrainFt Z$ValidFt = ValidFt Z$TrainPK = TrainPK Z$ValidPK = ValidPK Z$TrainN = TrainN Z$ValidN = ValidN
url <- "https://raw.githubusercontent.com/celehs/MASTA/master/data-raw/data_org/" TrainSurv <- fread(paste0(url, "TrainSurv.csv")) ValidSurv <- fread(paste0(url, "ValidSurv.csv")) #load("data_org.rda") TrainSurv <- data.frame(TrainSurv) ValidSurv <- data.frame(ValidSurv) colnames(TrainSurv)=colnames(ValidSurv) = c("case","delta","sx","sc",paste0("base_pred",1:3)) Z$nn = nrow(TrainSurv) Z$codes = paste0("pred",1:3) Z$Tend <- 1 Z$TrainSurv <- TrainSurv Z$ValidSurv <- ValidSurv Z$TrainSurv_pred_org <- TrainSurv[,-c(1:4)] Z$ValidSurv_pred_org <- ValidSurv[,-c(1:4)] str(Z) save(Z,file="./data/data-for-fit.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.