Overview

This package re-implements the first step of the {MASTA} package to extract features from longitudinal encounter records. Compared to {MASTA}, the input data of {IFPCA} is more compact and memory efficient Click HERE to view input data structure.

Installation

Load the package into R.

library(MASTA)
library(survival)
library(doParallel)
library(foreach)
library(data.table)
library(survC1)
library(rootSolve)
library(splines)
library(gglasso)
library(glmnet)
library(rpart)
library(rpart.utils)
library(data.table)
#url <- "https://raw.githubusercontent.com/celehs/MASTA/master/R/"
#source(paste0(url,"MASTA.R"))
#source(paste0(url,"masta-fit.R"))
#source(paste0(url,"masta-fit-bs-grplasso.R"))
#source(paste0(url,"masta-fit-npmle.R"))
#source(paste0(url,"masta-fit-cheng.R"))

# source("./R/MASTA.R")
# source("./R/masta-fit-bs-grplasso.R")
# source("./R/masta-fit-npmle.R")
# source("./R/masta-fit-cheng.R")
# source("./R/masta-fit.R")

load("./data/data-for-fit.RData")
#str(Z)
object=Z
cov_group = NULL; thresh = 0.7; PCAthresh = 0.9; seed = 1234; seed2 = 100 ;
#-- test 1
b=masta.fit(Z, cov_group = NULL, thresh = 0.7, PCAthresh = 0.9, seed = 1234, seed2 = 100) 
b
#-- test 2
b=masta.fit(Z, cov_group = NULL, thresh = 1.0, PCAthresh = 0.9, seed = 1234, seed2 = 100) 
b


celehs/PETLER documentation built on Sept. 3, 2021, 8:21 a.m.