This package re-implements the first step of the {MASTA} package to extract features from longitudinal encounter records. Compared to {MASTA}, the input data of {IFPCA} is more compact and memory efficient Click HERE to view input data structure.
Load the package into R.
library(MASTA) library(survival) library(doParallel) library(foreach) library(data.table) library(survC1) library(rootSolve) library(splines) library(gglasso) library(glmnet) library(rpart) library(rpart.utils) library(data.table)
#url <- "https://raw.githubusercontent.com/celehs/MASTA/master/R/" #source(paste0(url,"MASTA.R")) #source(paste0(url,"masta-fit.R")) #source(paste0(url,"masta-fit-bs-grplasso.R")) #source(paste0(url,"masta-fit-npmle.R")) #source(paste0(url,"masta-fit-cheng.R")) # source("./R/MASTA.R") # source("./R/masta-fit-bs-grplasso.R") # source("./R/masta-fit-npmle.R") # source("./R/masta-fit-cheng.R") # source("./R/masta-fit.R") load("./data/data-for-fit.RData") #str(Z)
object=Z cov_group = NULL; thresh = 0.7; PCAthresh = 0.9; seed = 1234; seed2 = 100 ;
#-- test 1 b=masta.fit(Z, cov_group = NULL, thresh = 0.7, PCAthresh = 0.9, seed = 1234, seed2 = 100) b
#-- test 2 b=masta.fit(Z, cov_group = NULL, thresh = 1.0, PCAthresh = 0.9, seed = 1234, seed2 = 100) b
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.