library(CancerCellLineModelling) library(dplyr)
Intro - aim of package. See CancerCellLines package on github
Builds from the makeRespVsGeneticDataFrame
function output. Simple to use:
con <- setupSQLite('~/BigData/CellLineData/CancerCellLines.db') genelist <- c('BRAF', 'TP53', 'PTEN', 'NRAS', 'DGAT1') drugs <- c('PLX4720', 'Nutlin-3', 'AZD6244') cell_lines <- src_sqlite(con@dbname) %>% tbl('ccle_drug_data') %>% filter(Compound %in% drugs) %>% select(CCLE_name) %>% distinct() %>% collect() %>% as.data.frame my_df <- makeRespVsGeneticDataFrame(con, genelist, cell_lines$CCLE_name, drug = drugs, data_types=c('cosmicclp', 'hybcap'), drug_df=NULL) mutcounts_df <- univariateAnalysisMutCounts(my_df) res_df <- univariateAnalysis(my_df) res_df <- univariateAnalysisFDR(res_df, 2) univariateVolcanoPlot(res_df) #a bigger example library(piano) genelist2 <- unlist(loadGSC('/Users/pchapman/BigData/GSEA/c5.bp.v5.0.symbols.gmt')$gsc['DNA_REPAIR']) genelist2 <- c(genelist, genelist2) my_df2 <- makeRespVsGeneticDataFrame(con, genelist2, cell_lines$CCLE_name, drug = drugs, data_types=c('cosmicclp', 'hybcap'), drug_df=NULL) res_df2 <- univariateAnalysis(my_df2) res_df2 <- univariateAnalysisFDR(res_df2, 2) univariateVolcanoPlot(res_df2) pp <- univariateVolcanoPlot(res_df2, use_fdr = FALSE) pp pp + ggplot2::scale_x_log10(limits=c(0.01, 100)) #shiny app con <- setupSQLite('~/BigData/CellLineData/CancerCellLines.db') msigdb <- loadGSC('/Users/pchapman/BigData/GSEA/msigdb.v5.0.symbols.gmt') shinyUnivariateAnalysisApp(con) #basic example with manually entered gene names shinyUnivariateAnalysisApp(con, gsc=msigdb) #bigger example with all gene sets shinyUnivariateAnalysisApp(con, drug_df = dietlein_data, gsc=msigdb) #custom example with all gene sets #multivariate example con <- setupSQLite('~/BigData/CellLineData/CancerCellLines.db') my_df3 <- makeTallDataFrame(con, genelist2[1:30], cell_lines$CCLE_name, drug = drugs, data_types=c('affy', 'hybcap', 'resp'), drug_df=NULL) test_df <- multivariateAnalysisPrep(my_df3, 'AZD6244') glmnet_res <- multivariateAnalysisElasticNet(my_df3, 'AZD6244') multivariateAnalysisVarImp(glmnet_res) multivariateAnalysisVarImpPlot(glmnet_res, 20) gbmfit_res <- multivariateAnalysisGBM(my_df3, 'AZD6244') multivariateAnalysisVarImp(gbmfit_res) multivariateAnalysisVarImpPlot(gbmfit_res, 20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.