According to https://www.sciencedirect.com/science/article/pii/S1751731121001683#t0005 methane emission per cow and year ($E$) can be computed as
$$E = F * \alpha$$
where $F$ is the total dry matter intake per cow and year. Because this is a multiplicative model, we take logarithms to get a linear regression where
$$log(E) = log(F * \alpha) = log(\alpha) + log(F)$$
Hence using logarithms, we can use it as data for a linear regression
# methane in kgg per kg DM alpha <- 20.72/1000 log(alpha) # mean CH4 emmission in kg per year n_mean_ch4 <- 120 n_sd_shrink_ch4 <- 10 n_sd_ch4 <- 31/n_sd_shrink_ch4 # DMI n_mean_dmi <- n_mean_ch4 / alpha n_mean_dmi
n_sd_dmi <- n_sd_ch4 / alpha nd_sd_shrink_dmi <- 4 n_sd_dmi <- n_sd_dmi / nd_sd_shrink_dmi n_sd_dmi
set.seed(1532) n_nr_rec_p2 <- 15 vec_log_ch4 <- rnorm(n_nr_rec_p2, mean = log(n_mean_ch4), sd = log(n_sd_ch4)) summary(vec_log_ch4)
vec_log_dmi <- rnorm(n_nr_rec_p2, mean = log(n_mean_dmi), sd = log(n_sd_dmi)) summary(vec_log_dmi)
Use a model for `lCH4``
n_ch4_dmi_beta <- 1.531 vec_log_ch4_fit <- n_ch4_dmi_beta * vec_log_dmi + log(alpha)/n_sd_shrink_ch4 + rnorm(n_nr_rec_p2, sd = n_sd_ch4) mean(vec_log_ch4_fit)
tbl_ch4_dmi <- tibble::tibble(Animal = c(1:n_nr_rec_p2), lDMI = round(vec_log_dmi, digits = 2), lCH4 = round(vec_log_ch4_fit, digits = 2)) tbl_ch4_dmi
Show a plot
library(ggplot2) ggplot(data = tbl_ch4_dmi, aes(x = lDMI, y = lCH4)) + geom_point() + geom_smooth(method = "lm", se = FALSE, aes(color = "red"), show.legend = FALSE)
s_exam_data_p02 <- file.path(here::here(), "docs", "data", "asm_exam_p02.csv") if (!file.exists(s_exam_data_p02)) readr::write_csv(tbl_ch4_dmi, s_exam_data_p02)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.