Use a sample of the dataset pedigreemm::milk
to do model selection
n_nr_rec_p3 <- 20 set.seed(7212) vec_sample_idx <- sample(nrow(pedigreemm::milk), n_nr_rec_p3) vec_sample_idx
Get the records
tbl_milk_p03 <- tibble::as_tibble(pedigreemm::milk[vec_sample_idx,]) tbl_milk_p03
Select only the columns lact
and dim
and the response fat
.
library(dplyr) tbl_milk_p03 <- tbl_milk_p03 %>% select(id, lact, dim, fat) tbl_milk_p03
Add a random column and call it hei
n_mean_hei <- 149 n_sd_hei <- 2.12 vec_hei <- rnorm(n_nr_rec_p3, mean = n_mean_hei, sd = n_sd_hei) tbl_milk_p03$hei <- as.integer(vec_hei) tbl_milk_p03
Model selection
lm_milk_full <- lm(fat ~ lact + dim + hei, data = tbl_milk_p03) summary(lm_milk_full)
olsrr::ols_step_best_subset(lm_milk_full)
summary(aov(fat ~ lact + dim + hei, data = tbl_milk_p03))
s_exam_data_p03 <- file.path(here::here(), "docs", "data", "asm_exam_p03.csv") if (!file.exists(s_exam_data_p03)) readr::write_csv(tbl_milk_p03, s_exam_data_p03)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.