knitr::opts_chunk$set(echo = TRUE)
s_ex10_p01_data_path <- "https://charlotte-ngs.github.io/asmss2022/data/asm_ped_sim_data.csv" if (!params$isonline) s_ex10_p01_data_path <- file.path(here::here(), "docs", "data", "asm_ped_sim_data.csv") sigma_u2 <- 9 sigma_s2 <- sigma_u2 / 4 sigma_e2 <- 36
Use the following dataset to predict breeding values using a sire model. The dataset is available from
cat(s_ex10_p01_data_path, "\n")
r sigma_s2
$.r sigma_e2
$.pedigreemm
package.Read the data
Compute the inverse sire relationship matrix
Setup the mixed model equations
Solve mixed model equations
s_ex10_p02_data_path <- "https://charlotte-ngs.github.io/asmss2022/data/asm_ped_sim_data.csv" if (!params$isonline) s_ex10_p02_data_path <- file.path(here::here(), "docs", "data", "asm_ped_sim_data.csv") sigma_u2 <- 9 sigma_s2 <- sigma_u2 / 4 sigma_e2 <- 36
Use the same dataset as in Problem 1 to predict breeding values, but use an animal model instead of a sire model. The dataset is available from
cat(s_ex10_p02_data_path, "\n")
r sigma_u2
$.r sigma_e2
$.pedigreemm
package.Read the data
Compute the inverse sire relationship matrix
Setup the mixed model equations
Solve mixed model equations
Compare the order of the predicted breeding values for the sires from the sire model and from the animal model.
cat('\n---\n\n _Latest Changes: ', format(Sys.time(), '%Y-%m-%d %H:%M:%S'), ' (', Sys.info()['user'], ')_\n', sep = '')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.