cat(cnt$out(ps_suffix = "Variance Components"), "\n")
We are given the following dataset for the trait live weight (LiveWeight
) for cattle.
\textit{Der folgende Datensatz umfasst das Merkmal Lebendgewicht (LiveWeight
) von Rindern.}
knitr::kable(tbl_data_anova, booktabs = TRUE, escape = FALSE, format = 'latex')
\begin{enumerate} \item[a)] Compute the estimate of the error variance $\sigma_e^2$ from the residuals of the fixed linear model specified below.
\textit{Schätzen Sie die Fehlervarianz $\sigma_e^2$ basierend auf den Residuen des folgenden fixen Modells.}
\points{r lPointsQ5$TaskA
}
\end{enumerate}
The fixed linear model that is used is
$$y = Xb + e$$ where $y$ is the vector of all live weight values, $b$ is the vector of the effects caused by the different farms. The fixed linear model is specified in R by
tbl_data_anova$Farm <- as.factor(tbl_data_anova$Farm) lm_lweight <- lm(LiveWeight ~ 0 + Farm, data = tbl_data_anova)
The resulting effects of the farms are
(vec_coef_lweight <- coefficients(lm_lweight))
\solstart
The esimate of the error variance is computed based on the resiudals. The residuals can be obtained by the function residuals()
in R.
vec_res <- residuals(lm_lweight) ssq_res <- crossprod(vec_res) (n_est_res_var <- ssq_res / (nrow(tbl_data_anova)-length(vec_coef_lweight)))
The error standard deviation is
(n_est_res_sd <- sqrt(n_est_res_var))
\solend
\clearpage \pagebreak
\begin{enumerate}
\item[b)] Verify your result from task a) with the output of the summary()
-function applied to the result of the lm()
-function
\textit{Verifizieren Sie das Resultat aus Aufgabe a) anhand des Outputs der summary
-Funktion angewendet auf das Resultat der lm()
-Funktion}
\points{r lPointsQ5$TaskB
}
\end{enumerate}
\solstart
From the task, we have the result object of the lm()
-function which is called lm_lweight
. Applying the summary()
-method leads to
summary(lm_lweight)
The number next to Residual standard error:
corresponds to the estimated value of the error standard deviation.
\solend
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.