knitr::opts_chunk$set(echo = FALSE, results = "asis")
knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)

Consequences of Definition of Breeding Value

The Basic Model

\begin{align} y_{ij} &= v_i + e_{ij} \notag \ &= \mu + u_i + d_i + i_i + e_{ij} \notag \end{align}

\begin{tabular}{llp{8cm}} where & & \ & $y_{ij}$ & $j^{th}$ record of animal $i$ \ & $\mu$ & population mean \ & $v_i$ & genotypic value, corresponding to the sum of all additive ($u$), dominance ($d$) and epistatic ($i_i$) effects of the genotype of animal $i$ \ & $e_{ij}$ & random environmental effects of animal $i$ \end{tabular}

Re-arranging Terms

#rmdhelp::use_odg_graphic(ps_path = "odg/basicmodelrearrterm.odg")
knitr::include_graphics(path = "odg/basicmodelrearrterm.png")

New Model

\begin{equation} y_{ij} = \mu_i + u_i + e_{ij}^* \notag \end{equation}

\begin{tabular}{llp{8.5cm}} where & & \ & $y_{ij}$ & $j^{th}$ record of animal $i$ \ & $\mu_i$ & identifiable fixed environmental effect \ & $u_i$ & sum of all additive ($u$) genetic effects of the genotype of animal $i$ \ & $e_{ij}^*$ & dominance, epistatic and random environmental effects of animal $i$ \end{tabular}

Infinitesimal Model

Central Limit Theorem

# fixing some constants
set.seed(9876)
n_nr_sample <- 10000
n_nr_comp <- 10^(1:3)

# define a function to compute sample means
sample_comp_sum <- function(pn_nr_comp, pn_nr_sample){
  return(sapply(1:pn_nr_comp, 
                function(x, y) sum(runif(y))/y,
                pn_nr_sample))
}
# vectors with component sums
vec_sum_10 <- sample_comp_sum(pn_nr_comp = n_nr_comp[1], pn_nr_sample = n_nr_sample)
vec_sum_100 <- sample_comp_sum(pn_nr_comp = n_nr_comp[2], pn_nr_sample = n_nr_sample)
vec_sum_1000 <- sample_comp_sum(pn_nr_comp = n_nr_comp[3], pn_nr_sample = n_nr_sample)
# plots
opar <- par()
par(mfrow=c(1,3))
hist(vec_sum_10)
hist(vec_sum_100)
hist(vec_sum_1000)

Decomposition of Breeding Value

#rmdhelp::use_odg_graphic(ps_path = "odg/decompbreedingvalue.odg")
knitr::include_graphics(path = "odg/decompbreedingvalue.png")

Basic Principle of Predicting Breeding Values

Breeding values are predicted according to the following two steps.

  1. Observations corrected for the appropriate mean performance values of animals under the same conditions
    • conditions are described by the effects captured in $\mu_i$.
  2. The corrected observations are weighted by a certain factor
    • factor reflects the amount of information available for prediction

Animal's Own Performance - Single Record

$\rightarrow$ plot

Plot $u$ against $y$

#rmdhelp::use_odg_graphic(ps_path = "odg/regbreedingvaluesinglerecord.odg")
knitr::include_graphics(path = "odg/regbreedingvaluesinglerecord.png")

Regression

\begin{equation} u_i = y_{ij} - \mu_i - e_{ij}^* \notag \end{equation}

\begin{equation} u_i = b * (y_{ij} - \mu_i) + e_{ij}^{**} \notag \end{equation}

Regression Coefficient

\vspace{-2ex} \begin{align} b &= \frac{cov(u,y)}{var(y)} \notag \ &= \frac{cov(u,\mu + u + e)}{var(y)} \notag \ &= \frac{cov(u,u)}{var(y)} \notag \ &= \frac{var(u)}{var(y)} = h^2 \notag \end{align}

where $h^2$ is called heritability

Prediction

\begin{align} \hat{u_i} &= b * (y_i - \mu) \notag \ &= h^2 * (y_i - \mu) \notag \end{align}

Accuracy

\begin{align} r_{u,y} &= \frac{cov(u, y)}{\sigma_u \ \sigma_y} \notag \ &= \frac{\sigma_u^2}{\sigma_u \ \sigma_y} \notag \ &= \frac{\sigma_u}{\sigma_y} \notag \ &= h \notag \end{align}

Response To Selection

\begin{equation} R = i * r_{u,y}^2 * \sigma_y = i * h^2 * \sigma_y \notag \end{equation}

Repeated Records

\begin{equation} var(y) = var(u) + var(pe) + var(te) \notag \end{equation}

\begin{equation} t = \frac{var(u) + var(pe)}{var(y)} \notag \end{equation}

\begin{equation} \hat{u_i} = b(\tilde{y_i} - \mu) \notag \end{equation}

Regression Coefficient

\begin{equation} b = \frac{cov(u,\tilde{y})}{var(\tilde{y})} \notag \end{equation}

\begin{equation} cov(u,\tilde{y}) = cov(u, u + pe + {1\over n} \sum_{k=1}^n te_k) = \sigma_u^2 \notag \end{equation}

\begin{equation} var(\tilde{y}) = var(u) + var(pe) + {1\over n} var(te) \notag \end{equation}

\begin{align} var(\tilde{y}) &= t * \sigma_y^2 + {1\over n} (1-t) * \sigma_y^2 \notag \ &= {1\over n}\left( n*t + (1-t) \right) \sigma_y^2 \notag \ &= \frac{1 + (n-1)t}{n} \sigma_y^2 \notag \end{align}

Putting Results together

\begin{align} b &= \frac{cov(u,\tilde{y})}{var(\tilde{y})} \notag \ &= \frac{n \sigma_u^2}{(1 + (n-1)t) \sigma_y^2} \notag \ &= \frac{nh^2}{1 + (n-1)t} \notag \end{align}

Progeny Records

\begin{equation} \hat{u_i} = b * (\bar{y_i} - \mu) \notag \end{equation}

where

\begin{equation} b = \frac{cov(u_i, \bar{y_i})}{var(\bar{y_i})} \notag \end{equation}

Covariance and Variance

\begin{align} cov(u_i, \bar{y_i}) &= cov(u_i, {1\over 2}u_i + {1\over 2}{1\over n}\sum_{k=1}^n u_{d,i} + {1\over n}\sum_{k=1}^n m_k + {1\over n}\sum_{k=1}^n e_k) \notag \ &= cov(u_i, {1\over 2}u_i) \notag \ &= {1\over 2} cov(u_i, u_i) = {1\over 2} \sigma_u^2 \notag \end{align}

\begin{equation} var(\bar{y_i}) = (t + (1-t)/n) \sigma_y^2 \notag \end{equation}

with $t = h^2 / 4$

Intra-Class $t$

with $cov(.) = 0$, $t = var({1 \over 2} u_i) / var(y) = h^2/4$

Results

\begin{align} b &= \frac{1/2 \sigma_u^2}{(t + (1-t)/n) \sigma_y^2} \notag \ &= \frac{1/2 h^2 \sigma_y^2}{({1\over 4}h^2 + (1 - {1\over 4}h^2)/n) \sigma_y^2} \notag \ &= \frac{2nh^2}{nh^2 + (4-h^2)} \notag \ &= \frac{2n}{n + (4-h^2)/h^2} \notag \ &= \frac{2n}{n+k} \notag \end{align}

with $k=\frac{4-h^2}{h^2}$.



charlotte-ngs/lbgfs2020 documentation built on Dec. 20, 2020, 5:39 p.m.