knitr::opts_chunk$set(echo = FALSE, results = "asis")
knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)

So Far ...

$\rightarrow$ univariate analyses

$\rightarrow$ multi-trait or multiple trait

Multiple Trait Selection

Tandem Selection

Independent Selection Thresholds

Example

### # selection thresolods
n_milk_sel_thr <- 6900
n_prot_sel_thr <- 3.5
### # mean and sd of traits
n_nr_trait <- 2
n_milk_mean <- 6800
n_milk_sd <- 600
n_prot_mean <- 3.4
n_prot_sd <- .2
n_corr <- -.4
### # variance - covariance matrix
n_cov <- n_corr * n_milk_sd * n_prot_sd
mat_varcov <- matrix(c(n_milk_sd^2, n_cov,
                       n_cov,       n_prot_sd^2), 
                     nrow = n_nr_trait, 
                     ncol = n_nr_trait, 
                     byrow = TRUE)

### # generate observations
n_nr_obs <- 50
### # cholesky decomposition of varcov
mat_varcov_chol <- chol(mat_varcov)
### # generate independent observations
set.seed(5432)
mat_unrel_obs <- matrix(c(rnorm(n_nr_obs),rnorm(n_nr_obs)), nrow = n_nr_trait, byrow = TRUE)
mat_obs <- crossprod(mat_unrel_obs, mat_varcov_chol) + matrix(c(n_milk_mean, n_prot_mean), nrow=n_nr_obs, ncol=n_nr_trait, byrow = TRUE)
### # convert data matrix into a tibble that is later used for plotting
tbl_milk_prot <- tibble::as_tibble(mat_obs)
colnames(tbl_milk_prot) <- c("Milk", "Protein")
### # define the colours of the threshold lines
s_col_milk_thr <- "red"
s_col_prot_thr <- "blue"
### # use ggplot2 to do the plot
library(ggplot2)
milk_prot_plot <- qplot(Milk, Protein, data=tbl_milk_prot, geom="point", 
                         xlab = "Milk Yield", ylab = "Protein Content")
milk_prot_plot <- milk_prot_plot + 
  geom_hline(yintercept = n_prot_sel_thr, colour = s_col_prot_thr) +
  geom_vline(xintercept = n_milk_sel_thr, colour = s_col_milk_thr)
print(milk_prot_plot)

Pros and Cons

$\rightarrow$ exclusion of very many animals and reduction in genetic variability

$\rightarrow$ genetic gain will not be as expected

  1. Differences in the economic relevance ignored.

$\rightarrow$ threshold in all traits above positive predicted breeding values emphasizes traits with high heritability

Aggregate Genotype

$$H = w^Tu$$

Selection Index

$$I = b^T\hat{u}$$

$$b = P^{-1}Gw$$

Implementations

Multivariate Analysis

$$y_1 = X_1 \beta_1 + Z_1u_1 + e_1$$ $$y_2 = X_2 \beta_2 + Z_2u_2 + e_2$$

$$\left[ \begin{array}{c} y_1 \ y_2 \end{array} \right] = \left[ \begin{array}{lr} X_1 & 0 \ 0 & X_2 \end{array} \right] \left[ \begin{array}{c} \beta_1 \ \beta_2 \end{array} \right] + \left[ \begin{array}{lr} Z_1 & 0 \ 0 & Z_2 \end{array} \right] \left[ \begin{array}{c} u_1 \ u_2 \end{array} \right] + \left[ \begin{array}{c} e_1 \ e_2 \end{array} \right] $$

Multivariate Model

$$\left[ \begin{array}{c} y_1 \ y_2 \end{array} \right] = \left[ \begin{array}{lr} X_1 & 0 \ 0 & X_2 \end{array} \right] \left[ \begin{array}{c} \beta_1 \ \beta_2 \end{array} \right] + \left[ \begin{array}{lr} Z_1 & 0 \ 0 & Z_2 \end{array} \right] \left[ \begin{array}{c} u_1 \ u_2 \end{array} \right] + \left[ \begin{array}{c} e_1 \ e_2 \end{array} \right] $$

can be written as

$$y = X \beta + Zu + e$$

with $y = \left[ \begin{array}{c} y_1 \ y_2 \end{array} \right]$, $\beta = \left[ \begin{array}{c} \beta_1 \ \beta_2 \end{array} \right]$, $u = \left[ \begin{array}{c} u_1 \ u_2 \end{array} \right]$, $e = \left[ \begin{array}{c} e_1 \ e_2 \end{array} \right]$

\vspace{2ex} $X = \left[ \begin{array}{lr} X_1 & 0 \ 0 & X_2 \end{array} \right]$, $Z = \left[ \begin{array}{lr} Z_1 & 0 \ 0 & Z_2 \end{array} \right]$

Multivariate Variance-Covariance Matrices

$$G_0 = \left[ \begin{array}{lr} \sigma_{g_{1}}^2 & \sigma_{g1,g2} \ \sigma_{g1,g2} & \sigma_{g_{2}}^2 \end{array} \right] = \left[ \begin{array}{lr} g_{11} & g_{12} \ g_{21} & g_{22} \end{array} \right] $$

$$var(u) = var\left[\begin{array}{c} u_1 \ u_2 \end{array} \right]

\left[ \begin{array}{lr} g_{11}A & g_{12}A \ g_{21}A & g_{22}A \end{array} \right] = G_0 \otimes A = G $$

$$R_0 = \left[ \begin{array}{lr} r_{11} & r_{12} \ r_{21} & r_{22} \end{array} \right]$$

$$ R = var(e) = var\left[\begin{array}{c} e_1 \ e_2 \end{array} \right] =
\left[ \begin{array}{lr} r_{11}I_n & r_{12}I_n \ r_{21}I_n & r_{22}I_n \end{array} \right] = R_0 \otimes I_n $$

Solutions

$$ \left[ \begin{array}{lr} X^TR^{-1}X & X^TR^{-1}Z \ Z^TR^{-1}X & Z^TR^{-1}Z + G^{-1} \end{array} \right] \left[ \begin{array}{c} \hat{\beta} \ \hat{u} \end{array} \right] = \left[ \begin{array}{c} X^TR^{-1}y \ Z^TR^{-1}y \end{array} \right] $$

Advantages



charlotte-ngs/lbgfs2020 documentation built on Dec. 20, 2020, 5:39 p.m.