knitr::opts_chunk$set(echo = FALSE, results = "asis")
knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)

So far ...

$\rightarrow$ How to combine different sources of information

Desired Scenario

#rmdhelp::use_odg_graphic(ps_path = "odg/desiredscenario.odg")
knitr::include_graphics(path = "odg/desiredscenario.png")

Two Approaches

  1. Selection Index Theory and
  2. Best Linear Unbiased Prediction (BLUP)

  3. Same genetic model

  4. Main difference in how identifiable environment is corrected for
  5. Start with 1. then move to 2.
  6. Nowadays 2. is most widely used method

Differentiate between

Three objectives of predicted breeding values

  1. selection criterion for parents of next generation
  2. prediction of true breeding value as early as possible
  3. predicted breeding values affect price of semen and breeding animals

Selection Index Method

#rmdhelp::use_odg_graphic(ps_path = "odg/selectionmethod.odg")
knitr::include_graphics(path = "odg/selectionmethod.png")

What is the Selection Index

Aggregate Genotype

#rmdhelp::use_odg_graphic(ps_path = "odg/aggregategenotype.odg")
knitr::include_graphics(path = "odg/aggregategenotype.png")

Selection Methods

\begin{equation} H = w_1 a_1 + w_2 a_2 + \cdots + w_m a_m = w^T a \notag \end{equation}

\begin{tabular}{lll} where & $a$ & vector of true breeding values \ & $w$ & vector of economic values \end{tabular}

Economic Values

Change in Profit

#rmdhelp::use_odg_graphic(ps_path = "odg/changeinprofit.odg")
knitr::include_graphics(path = "odg/changeinprofit.png")

Selection Index Construction

\begin{equation} E(H-I)^2 \rightarrow \text{ min} \notag \end{equation}

\begin{equation} Pb = Gw \notag \end{equation}

Solution

\begin{align} Pb &= Gw \notag \ P^{-1}Pb &= P^{-1}Gw \notag \ b &= P^{-1}Gw \notag \end{align}

\begin{equation} r_{HI} = \frac{cov(H,I)}{\sigma_H \sigma_I} = \frac{\sigma_I}{\sigma_H} \notag \end{equation}



charlotte-ngs/lbgfs2020 documentation built on Dec. 20, 2020, 5:39 p.m.