knitr::opts_chunk$set(echo = FALSE, results = "asis") knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)
Accurracy
Confidence Intervals
Decomposition of Predicted Breeding values
$$var(\beta - \hat{\beta}) = var(\hat{\beta})$$
$$var(u - \hat{u}) = var(u) - 2*cov(u,\hat{u}) + var(\hat{u}) = var(u) - var(\hat{u}) = PEV(\hat{u})$$
because with BLUP: $cov(u,\hat{u}) = var(\hat{u})$
$$ \left[ \begin{array}{lr} X^TR^{-1}X & X^TR^{-1}Z \ Z^TR^{-1}X & Z^TR^{-1}Z + G^{-1} \end{array} \right]^{-1} = \left[ \begin{array}{lr} C^{11} & C^{12} \ C^{21} & C^{22} \end{array} \right] $$
$$PEV(\hat{u}) = var(u) - var(\hat{u}) = C^{22}$$
$$PEV(\hat{u}i) = (C){ii}^{22}$$
where $(C)_{ii}^{22}$ is the $i$-th diagonal of $C^{22}$
$$r_{u_i, \hat{u}_i} = \frac{cov(u_i, \hat{u}_i)}{\sqrt{var(u_i) * var(\hat{u}_i)}} = \sqrt{\frac{var(\hat{u}_i)}{var(u_i)}}$$
$$PEV(\hat{u}i) = (C){ii}^{22} = var(u_i) - var(\hat{u}i) = var(u_i) - r{u_i, \hat{u}_i}^2 var(u_i)$$
$$B_i = r_{u_i, \hat{u}i}^2 = \frac{var(u_i) - (C){ii}^{22}}{var(u_i)} = 1 - \frac{PEV(\hat{u}i)}{var(u_i)}
= 1 - \frac{(C){ii}^{22}}{var(u_i)} $$
#rmddochelper::use_odg_graphic(ps_path = "odg/confintfig.odg") knitr::include_graphics(path = "odg/confintfig.png")
$$SEP(\hat{u}i) = \sqrt{PEV(\hat{u}_i)} = \sqrt{(1 - r{u_i,\hat{u}_i}^2) * var(u_i)}$$
pred_bv <- 100 sigma_u <- 12 r2_seq <- c(seq(0.4, 0.9, 0.1), .95, .99) sep <- sqrt(1-r2_seq) * sigma_u alpha <- .05 lower_limit <- qnorm(alpha/2, lower.tail = TRUE) upper_limit <- qnorm(1-alpha/2, lower.tail = TRUE) interval_width <- (upper_limit - lower_limit) * sep ### # table with accuracies and interval widths tbl_interval_widths <- tibble::tibble(Accurracy = r2_seq, `Interval Width` = round(interval_width, digits = 2)) knitr::kable(tbl_interval_widths, booktabs = TRUE, longtable = TRUE, caption = "Widths of Confidence Intervals for Given Accuracies")
with $\hat{u}_i = r pred_bv
$, $var(u_i) = r sigma_u^2
$ and $\alpha = r alpha
$
$$M \cdot s = r$$
with
$$ s = \left[ \begin{array}{c} \hat{\beta} \ \hat{u} \end{array} \right] $$
\begin{equation} y_i = \mu + u_i + e_i \notag \end{equation}
\begin{tabular}{lll} where & $y_i$ & Observation for animal $i$\ & $u_i$ & breeding value of animal $i$ with a variance of $(1+F_i)\sigma_u^2$\ & $e_i$ & random residual effect with variance $\sigma_e^2$\ & $\mu$ & single fixed effect \end{tabular}
sigmae2 <- 40 sigmaa2 <- 20 lambda <- sigmae2/sigmaa2 sigmap2 <- sigmaa2 + sigmae2 h2 <- sigmaa2 / sigmap2 nNrObsSmd <- 5 dfWwg <- tibble::tibble(Animal = (1:nNrObsSmd), Sire = c(NA,NA,NA,1,4), Dam = c(NA,NA,NA,2,3), WWG = c(4.5,2.9,3.9,3.5,5.0)) knitr::kable(dfWwg)
Variance components $\sigma_e^2 = r sigmae2
$ and $\sigma_u^2 = r sigmaa2
$.
### # constants nNrObsSmd <- 5 ### # design matrics matXSmd <- matrix(data = 1, nrow = nNrObsSmd) matZSmd <- diag(1, nrow = nNrObsSmd, ncol = nNrObsSmd) matXtXSmd <- crossprod(matXSmd) matXtZSmd <- crossprod(matXSmd,matZSmd) matZtZSmd <- crossprod(matZSmd)
cat("\n$$\n") cat(paste(rmdhelp::bmatrix(pmat = matXSmd, ps_name = 'X'), collapse = '\n')) cat("\\text{, }") cat(paste(rmdhelp::bmatrix(pmat = matZSmd, ps_name = 'Z'), collapse = '\n')) cat("$$\n") cat("\n$$\n") cat(paste(rmdhelp::bmatrix(pmat = matXtXSmd, ps_name = 'X^TX'), collapse = '\n')) cat("\\text{, }") cat(paste(rmdhelp::bmatrix(pmat=matXtZSmd, ps_name = 'X^TZ'), collapse = '\n')) cat("$$\n") cat("\n$$\n") cat(paste(rmdhelp::bmatrix(pmat = matZtZSmd, ps_name = 'Z^TZ'), collapse = '\n')) cat("\n$$\n")
vecY <- dfWwg$WWG
$$X^Ty = \left[\sum_{j=1}^n y_i\right] = r sum(vecY)
$$
vecZtYSmd <- rmdhelp::vecGetVecElem(psBaseElement = "y", pnVecLen = nNrObsSmd) cat("\n$$\n") cat(paste(rmdhelp::bmatrix(pmat = as.matrix(vecZtYSmd, nrow = nNrObsSmd), ps_name = 'Z^Ty'), collapse = '\n')) cat("= \n") cat(paste(rmdhelp::bcolumn_vector(pvec = vecY), collapse = '\n')) cat('$$\n')
pedSmd <- pedigreemm::pedigree(sire = c(NA,NA,NA,1,4), dam = c(NA,NA,NA,2,3), label = as.character(1:nNrObsSmd)) matAinvSmd <- as.matrix(pedigreemm::getAInv(ped = pedSmd)) cat(paste(rmdhelp::bmatrix(pmat = matAinvSmd, ps_name = 'A^{-1}', ps_env = '$$')))
\begin{equation} \left[ \begin{array}{cc} X^TX & X^TZ\ Z^TX & Z^TZ + A^{-1} * \lambda \end{array} \right] \left[ \begin{array}{c} \hat{\mu}\ \hat{u} \end{array} \right] = \left[ \begin{array}{c} X^Ty\ Z^Ty \end{array} \right] \notag \end{equation}
vecY <- dfWwg$WWG matCoeffSmd <- cbind(rbind(matXtXSmd,t(matXtZSmd)),rbind(matXtZSmd,matZtZSmd + matAinvSmd * lambda)) solVecSmd <- c("\\mu", rmdhelp::vecGetVecElem(psBaseElement = "\\hat{u}", pnVecLen = nNrObsSmd)) vecRhsSmd <- rbind(crossprod(matXSmd,vecY), crossprod(matZSmd,vecY)) cat("\n$$\n") cat(paste(rmdhelp::bmatrix(pmat = matCoeffSmd), collapse = '\n')) cat(paste(rmdhelp::bmatrix(pmat = as.matrix(solVecSmd, nrow = nNrObsSmd+1)), collapse = '\n')) cat(" = \n") cat(paste(rmdhelp::bmatrix(pmat = as.matrix(vecRhsSmd, nrow = nNrObsSmd+1)), collapse = '\n')) cat("$$\n")
$$ d^{ii} = \left{ \begin{array}{rl} 2 & \text{both parents known}\ {4\over 3} & \text{one parent known}\ 1 & \text{both parents unknown} \end{array} \right. $$
$$y_4 = 3.5 = 1* \hat{\mu} - 2 * \hat{u}_1 - 2 * \hat{u}_2 + 1 * \hat{u}_3 + 6 * \hat{u}_4 - 2 * \hat{u_5}$$
$$\hat{u}_4 = {1\over 6}\left[ y_4 - \hat{\mu} + 2 * (\hat{u}_1 + \hat{u}_2) - \hat{u}_3 + 2 \hat{u}_5\right] $$
\begin{align} \hat{u}i &= \frac{1}{1 + \alpha \delta^{(i)} + {\alpha\over 4} \sum{j=1}^n \delta^{(k_j)}} \left[y_i - \hat{\mu} \right. \notag \ & \left. + {\alpha\over 2}\left{\delta^{(i)}(\hat{u}s + \hat{u}_d) + \sum{j=1}^n \delta^{(k_j)} (\hat{u}{k_j} - {1\over 2}\hat{u}{l_j}) \right} \right] \notag \end{align}
\begin{tabular}{lll} where & $\alpha$ & ration between variance components $\sigma_e^2 / \sigma_u^2$ \ & $\delta^{(j)}$ & contribution for animal $j$ to $A^{-1}$ \end{tabular}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.