knitr::opts_chunk$set(echo = FALSE, results = "asis") knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)
#rmdhelp::use_odg_graphic(ps_path = "odg/fig-benefit-geno-sel-cattle.odg") knitr::include_graphics(path = "odg/fig-benefit-geno-sel-cattle.png")
#rmdhelp::use_odg_graphic(ps_path = "odg/fig-benefit-geno-sel-pig.odg") knitr::include_graphics(path = "odg/fig-benefit-geno-sel-pig.png")
#rmdhelp::use_odg_graphic(ps_path = "odg/fig-polygenic-model.odg") knitr::include_graphics(path = "odg/fig-polygenic-model.png")
Two types of models are used
marker effects ($a$-values) are fitted using
Problem of finding which markers are associated to QTL
#rmdhelp::use_odg_graphic(ps_path = "odg/mem-vs-bvm.odg") knitr::include_graphics(path = "odg/mem-vs-bvm.png")
Two Step:
Single Step
#rmdhelp::use_odg_graphic(ps_path = "odg/two-step-gs.odg") knitr::include_graphics(path = "odg/two-step-gs.png")
$$y = Xb + Zg + e$$ with
$$\left[ \begin{array}{ll} X^TX & X^TZ \ Z^TX & Z^TZ + \lambda * G^{-1} \end{array} \right] \left[ \begin{array}{c} \hat{b} \ \hat{g} \end{array} \right] = \left[ \begin{array}{c} X^Ty \ Z^Ty \end{array} \right] $$ with $\lambda = \sigma_e^2 / \sigma_g^2$.
$$\left[ \begin{array}{lll} X^TX & X^TZ & 0 \ Z^TX & Z^TZ + G^{(11)} & G^{(12)} \ 0 & G^{(21)} & G^{(22)} \end{array} \right] \left[ \begin{array}{c} \hat{b} \ \hat{g}_1 \ \hat{g}_2 \end{array} \right] = \left[ \begin{array}{c} X^Ty \ Z^Ty \ 0 \end{array} \right] $$
Predicted Genomic Breeding Values
$$ G^{(21)} \cdot \hat{g}_1 + G^{(22)} \cdot \hat{g}_2 = 0$$
$$\hat{g}_2 = - (G^{(22)})^{-1} \cdot G^{(21)} \cdot \hat{g}_1$$
$$var(g) = G * \sigma_g^2$$
where $G$ is called genomic relationship matrix (GRM)
#rmddochelper::use_odg_graphic(ps_path = "odg/ibdvsibs.odg") knitr::include_graphics(path = "odg/ibdvsibs.png")
$$g = U \cdot q$$
$\rightarrow$ $E(g) = 0$
Decomposition of phenotypic observation $y_i$ with
$$y_i = w_i^T \cdot q + e_i$$
$$y_i = g_i + e_i$$
\begin{equation} w_i = \left{ \begin{array}{lll} 1 & \text{ with probability } & p^2 \ 0 & \text{ with probability } & 2p(1-p) \ -1 & \text{ with probability } & (1-p)^2 \end{array} \right. \notag \end{equation}
$\rightarrow E(w_i):$ For a single locus
$$E(w_i) = 1 * p^2 + 0 * 2p(1-p) + (-1)(1-p)^2 = p^2 - 1 + 2p - p^2 = 2p - 1 \ne 0$$
$$g_i = (w_i^T - s_i^T) \cdot q$$ with $s_i = E(w_i) = 2p-1$
$$g = U \cdot q = (W-S)\cdot q$$ with matrix $S$ having columns $j$ with all elements equal to $2p_j-1$ where $p_j$ is the allele frequency of the SNP allele associated with the positive effect.
$$\sigma_g^2 = \sigma_q^2 * \sum_{j=1}^k(1-2p_j(1-p_j))$$
$$var(g) = var(U \cdot q) = U \cdot var(q) \cdot U^T = UU^T \sigma_q^2$$
$$var(g) = UU^T \sigma_q^2 = G * \sigma_q^2 * \sum_{j=1}^k(1-2p_j(1-p_j))$$
$$G = \frac{UU^T}{\sum_{j=1}^k(1-2p_j(1-p_j))}$$
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.