knitr::opts_chunk$set(echo = FALSE, results = "asis")
knitr::knit_hooks$set(hook_convert_odg = rmdhelp::hook_convert_odg)

Introduction

Terminology

Benefits in Cattle

#rmdhelp::use_odg_graphic(ps_path = "odg/fig-benefit-geno-sel-cattle.odg")
knitr::include_graphics(path = "odg/fig-benefit-geno-sel-cattle.png")

Benefits in Pigs

#rmdhelp::use_odg_graphic(ps_path = "odg/fig-benefit-geno-sel-pig.odg")
knitr::include_graphics(path = "odg/fig-benefit-geno-sel-pig.png")

Genetic Model

Polygenic Model

#rmdhelp::use_odg_graphic(ps_path = "odg/fig-polygenic-model.odg")
knitr::include_graphics(path = "odg/fig-polygenic-model.png")

Statistical Models

Two types of models are used

  1. marker-effect models (MEM)
  2. genomic-breeding-value based models (BVM)

MEM

BVM

MEM versus BVM

#rmdhelp::use_odg_graphic(ps_path = "odg/mem-vs-bvm.odg")
knitr::include_graphics(path = "odg/mem-vs-bvm.png")

Logistic Procedures

Two Step Procedure

#rmdhelp::use_odg_graphic(ps_path = "odg/two-step-gs.odg")
knitr::include_graphics(path = "odg/two-step-gs.png")

Single Step GBLUP

$$y = Xb + Zg + e$$ with

Solution Via Mixed Model Equations

$$\left[ \begin{array}{ll} X^TX & X^TZ \ Z^TX & Z^TZ + \lambda * G^{-1} \end{array} \right] \left[ \begin{array}{c} \hat{b} \ \hat{g} \end{array} \right] = \left[ \begin{array}{c} X^Ty \ Z^Ty \end{array} \right] $$ with $\lambda = \sigma_e^2 / \sigma_g^2$.

Animals Without Observations

$$\left[ \begin{array}{lll} X^TX & X^TZ & 0 \ Z^TX & Z^TZ + G^{(11)} & G^{(12)} \ 0 & G^{(21)} & G^{(22)} \end{array} \right] \left[ \begin{array}{c} \hat{b} \ \hat{g}_1 \ \hat{g}_2 \end{array} \right] = \left[ \begin{array}{c} X^Ty \ Z^Ty \ 0 \end{array} \right] $$

Predicted Genomic Breeding Values

$$ G^{(21)} \cdot \hat{g}_1 + G^{(22)} \cdot \hat{g}_2 = 0$$

Solutions

$$\hat{g}_2 = - (G^{(22)})^{-1} \cdot G^{(21)} \cdot \hat{g}_1$$

Genomic Relationship Matrix

$$var(g) = G * \sigma_g^2$$

where $G$ is called genomic relationship matrix (GRM)

Properties of $G$

Change of Identity Concept

Identity

#rmddochelper::use_odg_graphic(ps_path = "odg/ibdvsibs.odg")
knitr::include_graphics(path = "odg/ibdvsibs.png")

Linear Combination

$$g = U \cdot q$$

Deviation

$\rightarrow$ $E(g) = 0$

Equivalence Between Models

Decomposition of phenotypic observation $y_i$ with

$$y_i = w_i^T \cdot q + e_i$$

$$y_i = g_i + e_i$$

Expected Values

\begin{equation} w_i = \left{ \begin{array}{lll} 1 & \text{ with probability } & p^2 \ 0 & \text{ with probability } & 2p(1-p) \ -1 & \text{ with probability } & (1-p)^2 \end{array} \right. \notag \end{equation}

$\rightarrow E(w_i):$ For a single locus

$$E(w_i) = 1 * p^2 + 0 * 2p(1-p) + (-1)(1-p)^2 = p^2 - 1 + 2p - p^2 = 2p - 1 \ne 0$$

Specification of $g$

$$g_i = (w_i^T - s_i^T) \cdot q$$ with $s_i = E(w_i) = 2p-1$

$$g = U \cdot q = (W-S)\cdot q$$ with matrix $S$ having columns $j$ with all elements equal to $2p_j-1$ where $p_j$ is the allele frequency of the SNP allele associated with the positive effect.

Genetic Variance

$$\sigma_g^2 = \sigma_q^2 * \sum_{j=1}^k(1-2p_j(1-p_j))$$

$$var(g) = var(U \cdot q) = U \cdot var(q) \cdot U^T = UU^T \sigma_q^2$$

$$var(g) = UU^T \sigma_q^2 = G * \sigma_q^2 * \sum_{j=1}^k(1-2p_j(1-p_j))$$

Genomic Relationship Matrix

$$G = \frac{UU^T}{\sum_{j=1}^k(1-2p_j(1-p_j))}$$

How To Compute $G$



charlotte-ngs/lbgfs2021 documentation built on Dec. 19, 2021, 3:01 p.m.