library(xgboost)
source('pad/onehot-script.R')
source('pad/script.R')
df = data.frame(ggplot2::diamonds)
df$ID = seq(1, dim(df)[1])
head(df)
out <- fun_data_prep(df[,-11],output_file_name='pad/onehot.txt')
x <- out$model.matrix[,-which(colnames(out$model.matrix)=='price')]
y <- out$model.matrix[,which(colnames(out$model.matrix)=='price')]
###### b0 + sum(score)
rea <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:linear')
xgb.dump(rea)
table(predict(rea, x))
reb <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:linear',
base_score=0.6)
xgb.dump(reb)
table(predict(reb, x))
###### log(p0/(1-p0)) + sum(score)
loa <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'binary:logistic')
xgb.dump(loa)
table(predict(loa, x))
1/(1+exp(-(-0.515068054)))
lob <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'binary:logistic',
base_score=0.6)
xgb.dump(lob)
table(predict(lob, x))
1/(1+exp(-(log(0.6/(1-0.6)) +0.494501412)))
###### log(p0/(1-p0)) + sum(score)
lra <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'binary:logitraw')
xgb.dump(lra)
table(predict(lra, x))
lrb <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'binary:logitraw',
base_score=0.6)
xgb.dump(lrb)
table(predict(lrb, x))
log(0.6/(1-0.6)) +0.494501412
###### check leaf+base>0 then 1 else 0
lha <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 2,
eta = .3,
nround = 2,
nthread = 2,
objective = 'binary:hinge')
xgb.dump(lha, with_stats=TRUE)
table(predict(lha, x))
11098+1134+70+950 # 0 counts
lhb <- xgboost(data = x,
label = as.numeric(y>1000),
max.depth = 3,
eta = .3,
nround = 1,
nthread = 2,
objective = 'binary:hinge',
base_score=0.1)
xgb.dump(lhb, with_stats=TRUE)
table(predict(lhb, x))
11098+1134+70+950 # 0 counts
###### log(mu0) + sum(score)
gma <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:gamma')
xgb.dump(gma)
table(predict(gma, x))
exp(log(0.5) + 0.299980313)
gmb <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:gamma',
base_score=2)
xgb.dump(gmb)
table(predict(gmb, x))
exp(log(2) + 0.299921185)
###### mu0 + sum(score)
twa <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:tweedie')
xgb.dump(twa)
table(predict(twa, x))
exp(log(0.5) + 0.599900246)
twb <- xgboost(data = x,
label = y,
max.depth = 2,
eta = .3,
nround = 1,
nthread = 2,
objective = 'reg:tweedie',
base_score=2)
xgb.dump(twb)
table(predict(twb, x))
exp(log(2) + 0.599802852)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.