cheuerde/cpgen: Parallel Genomic Evaluations

Frequently used methods in genomic applications with emphasis on parallel computing. At its core, the package has a Gibbs Sampler that allows running univariate linear mixed models that have both, sparse and dense design matrices. The parallel sampling method in case of dense design matrices (e.g. Genotypes) allows running Ridge Regression or BayesA for a very large number of individuals. The package therefor explicitly allows running Single Step Genomic Prediction models. In addition, the package offers parallelized functions for common tasks like genome-wide association studies and Cross Validation in a memory efficient way.

Getting started

Package details

AuthorClaas Heuer
MaintainerClaas Heuer <[email protected]>
LicenseGPL (>= 2)
Version0.2
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("devtools")
library(devtools)
install_github("cheuerde/cpgen")
cheuerde/cpgen documentation built on Aug. 5, 2018, 9:12 p.m.