Description Usage Format Details Methods See Also
MonteCarloSimClass only resamples A under the intervention function g_star, never W or E.
For each MC simulation, it firstly treats model.Q.init as the fitted models for E[Y|A,W,E], then estimate
psi_n using Monte-Carlo integration. i.e., average of n predicted E(Y|A=a, W=w,E=e) where a is
a vector of n new exposures randomly drawn under g_star. Take as many iterations as needed until convergence
of ψ^{I}_n (or ψ^{II}_n) occurs.
1 |
An R6Class generator object
OData.ObsP0 - A DatKeepClass class object, where exposures are generated under observed exposure mechanism g0.
OData.gstar - A DatKeepClass class object, where new exposures are generated under user-specified
intervention g^{*}.
model.Q.init - A fitted model for E[Y|A,W,E].
model.Q.star.cov - A targeting model for covariate-based unweighted TMLE.
model.Q.star.int - A targeting model for intercept-based TMLE.
QY.init - Estimates of G-COMP.
QY.star.cov - Estimates of covariate-based unweighted TMLE.
QY.star.int - Estimates of intercept-based TMLE.
nobs - Number of observations in the observed data frame.
p - Number of Monte-Carlo simulations performed.
new(OData.ObsP0, OData.gstar, ...)Instantiate an new instance of MonteCarloSimClass.
get.gcomp(m.Q.init)Predict QY.init = E[Y_{g^*}] based on the initial model fit model.Q.init.
get.tmleCov(model.Q.star.cov, model.h.fit)Update QY.init based on the targeting model model.Q.star.cov
and the model for clever covriate h model.h.fit.
get.tmleCov(model.Q.star.cov, model.h.fit)Update QY.init based on the targeting model model.Q.star.cov
and the model for clever covriate h model.h.fit.
get.tmleInt(model.Q.star.int)Update QY.init based on the targeting model model.Q.star.int.
get.fiW()Get an estimate of fiW (hold ALL W's fixed).
tmleCom_Options, DatKeepClass, RegressionClass, tmleCommunity
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.