plot.cv.smog | R Documentation |
cv.smog
classYield a search path for optimal tuning parameters λ_G and λ_I using the mean-squared errors from the cross-validations.
## S3 method for class 'cv.smog' plot(x, ...)
x |
An fitted object in "cv.smog" class. |
... |
Other graphical parameters to ggplot2. |
x-axis represents the group tuning parameter λ_G and y-axis for the interaction tuning parameter λ_I, respectively. The point size demonstrates the maganitude of MSE or negative log-likelihood.
Chong Ma, chongma8903@gmail.com.
ma2019structuralsmog
smog, cv.smog, cv.cglasso.
# generate design matrix x set.seed(2018) n=100;p=20 s=10 x=matrix(0,n,1+2*p) x[,1]=sample(c(0,1),n,replace = TRUE) x[,seq(2,1+2*p,2)]=matrix(rnorm(n*p),n,p) x[,seq(3,1+2*p,2)]=x[,seq(2,1+2*p,2)]*x[,1] g=c(p+1,rep(1:p,rep(2,p))) # groups v=c(0,rep(1,2*p)) # penalization status label=c("t",rep(c("prog","pred"),p)) # type of predictor variables # generate beta beta=c(rnorm(13,0,2),rep(0,ncol(x)-13)) beta[c(2,4,7,9)]=0 # generate y data=x%*%beta noise=rnorm(n) snr=as.numeric(sqrt(var(data)/(s*var(noise)))) y=data+snr*noise cvfit=cv.smog(x,y,g,v,label,type = "AIC", family="gaussian") plot(cvfit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.