knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "README-" )
Bain stands for Bayesian informative hypothesis evaluation. It computes Bayes factors for informative hypotheses in a wide variety of statistical models. Just run your analysis as usual, and then apply bain to the output. A tutorial is available at DOI:10.1037/met0000201. A sequel with the focus on Structural Equation Models is available at https://doi.org/10.1080/10705511.2020.1745644.
Install the latest release version of bain
from CRAN:
install.packages("bain")
You can also install the latest development version of bain
from GitHub. This requires a working toolchain, to compile the Fortran source code. Step 3 in this tutorial explains how to set up the toolchain. Then, run:
install.packages("devtools") devtools::install_github("cjvanlissa/bain")
Add bain to your existing R workflow, and obtain Bayes factors for your familiar R analyses! Bain is compatible with the pipe operator. Here is an example for testing an informative hypothesis about mean differences in an ANOVA:
# Load bain library(bain) # dplyr to access the %>% operator library(dplyr) # Iris as example data iris %>% # Select outcome and predictor variables select(Sepal.Length, Species) %>% # Add -1 to the formula to estimate group means, as in ANOVA lm(Sepal.Length ~ -1 + Species, .) %>% bain("Speciessetosa < Speciesversicolor = Speciesvirginica; Speciessetosa < Speciesversicolor < Speciesvirginica")
Every user-facing function in the package is documented, and the documentation can be accessed by running ?function_name
in the R console, e.g., ?bain
.
Moreover, you can read the Introduction to bain vignette by running vignette("Introduction_to_bain", package = "bain")
You can cite the R-package with the following citation:
Gu, X., Hoijtink, H., Mulder, J., & van Lissa, C. (2019). bain: Bayes factors for informative hypotheses. (Version 0.2.3) [R package]. https://CRAN.R-project.org/package=bain
If you have ideas, please get involved. You can contribute by opening an issue on GitHub, or sending a pull request with proposed features. Contributions in code must adhere to the tidyverse style guide.
By participating in this project, you agree to abide by the Contributor Code of Conduct v2.0.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.