#' @title Meta Features data set
#' @name meta_features
#' @description A dataset containing the metafeatures of 15 datasets. These datasets are used to construct the meta model
#'
#' @format A dataset with 15 rows and 13 columns
#'
#' \describe{
#' \item{Name}{The name of a particular dataset}
#' \item{Rows}{}
#' \item{Columns}{}
#' \item{Rows-Cols Ratio}{}
#' \item{Number Discrete}{}
#' \item{Max num factors}{}
#' \item{Min num factors}{}
#' \item{Avg num factors}{}
#' \item{Number Continuous}{}
#' \item{Gradient-Avg}{}
#' \item{Gradient-Min}{}
#' \item{Gradient-Max}{}
#' \item{Gradient-Std}{}
#' }
NULL
#' @title Recall data set
#' @name recall
#' @description
#' #' A dataset containing the metafeatures snd recall of the algorithms SVM, KNN, and naiive bayes classifier of 15 datasets. These datasets are used to construct the meta model
#'
#' @format A \code{tibble} with 15 rows and 16 columns
#'
#' \describe{
#' \item{Name}{The name of a particular dataset}
#' \item{Rows}{}
#' \item{Columns}{}
#' \item{Rows-Cols Ratio}{}
#' \item{Number Discrete}{}
#' \item{Max num factors}{}
#' \item{Min num factors}{}
#' \item{Avg num factors}{}
#' \item{Number Continuous}{}
#' \item{Gradient-Avg}{}
#' \item{Gradient-Min}{}
#' \item{Gradient-Max}{}
#' \item{Gradient-Std}{}
#' \item{SVM}{Recall when using Support Vector Machine classifier on dataset}
#' \item{KNN}{Recall when using K Nearest Neighbors classifier on dataset}
#' \item{NB}{Recall when using Naiive Bayes classifier on dataset}
#' }
NULL
#' @title Math Placement Exam Results
#' @name math_placement
#' @description
#' Response is courseSucess
#'
#' @format A dataset with 2696 rows and 15 columns
#'
#' \describe{
#' \item{Student}{Identification number for each student}
#' \item{Gender}{0=Female, 1=Male}
#' \item{PSATM}{PSAT score in Math}
#' \item{SATM}{SAT score in Math}
#' \item{ACTM}{ACTM score in Math}
#' \item{Rank}{Adjusted rank in HS class}
#' \item{Size}{Number of students in HS class}
#' \item{GPAadj}{Adjusted GPA}
#' \item{PlcmtScore}{Score on math placement exam}
#' \item{Recommends}{Recommended course: R0 R01 R1 R12 R2 R3 R4 R6 R8}
#' \item{Grade}{Course grade}
#' \item{Rectaken}{1=recommended course, 0=otherwise}
#' \item{TooHigh}{1=took course above recommended, 0=otherwise}
#' \item{TooLow}{1=took course above recommended, 0=otherwise}
#' \item{CourseSuccess}{1=B or better grade, 0=grade below B}
#' }
#
#' @source \url{http://vincentarelbundock.github.io/Rdatasets/doc/Stat2Data/MathPlacement.html}
NULL
#' @title Urine data set
#' @name urine
#' @description
#' A very large dataset
#'
#' @format A \code{tibble} with 79 rows and 7 columns
#'
#' \describe{
#' \item{r}{Indicator of the presence of calcium oxalate crystals.}
#' \item{gravity}{The specific gravity of the urine}
#' \item{ph}{The pH reading of the urine.}
#' \item{osmo}{The osmolarity of the urine. Osmolarity is proportional to the concentration of molecules in solution}
#' \item{cond}{The conductivity of the urine. Conductivity is proportional to the concentration of charged ions in solution.}
#' \item{urea}{The urea concentration in millimoles per litre.}
#' \item{calc}{The calcium concentration in millimoles per litre.}
#' }
#'
#' @source \url{http://vincentarelbundock.github.io/Rdatasets/doc/boot/urine.html}
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.