RFQAmodelr is a package to simplify using RFQAmodel to classify predicted protein structures as correct or incorrect.
You can install the development version of RFQAmodelr from GitHub with:
devtools::install_github("clarewest/RFQAmodelr")
RFQAmodelr also requires randomForest:
library(randomForest)
This is an example using the validation set models from the RFQAmodel paper:
library(RFQAmodelr)
library(randomForest)
## Read in the input scores
input <- read.table("https://raw.githubusercontent.com/clarewest/RFQAmodel/master/data/RFQAmodel_validation.txt", header=TRUE)
## Calculate ensemble features
features <- RFQAmodelr::get_features(input)
## Load classifier
data(RFQAmodelr)
## Classify models
classifications <- RFQAmodelr::classify_models(features, classifier=RFQAmodel)
## By default the new column will be named RFQAmodel
## For a different name, use optional argument name = string
## Add confidence categories
confidence <- RFQAmodelr::get_confidence(classifications)
# Optional arguments:
# predictor = "RFQAmodel"
# - column to use as the predictor
# confidence_cutoffs = c(0.5, 0.3, 0.1)
# - custom confidence cutoff levels for High, Medium and Low confidence
This can be done in a single step using e.g. dplyr:
library(dplyr)
results <-
RFQAmodelr::get_features(input) %>%
RFQAmodelr::classify_models(., classifier=RFQAmodel) %>%
RFQAmodelr::get_confidence(.)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.