knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(echo = FALSE) knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file()) devtools::load_all() library(mapview)
# Get sims file----------------- sim_output <- readRDS("data/outputs/ABMv4_bta_calibrate_Dec_Start_n5_bta0.1-0.3_2021-01-31.rds") bta_sweeps <- rep(seq(0.1,0.3,length.out = 6), each = 5) nsims <- length(sim_output) # Get observed datasets for comparison -------------- source("data/get/COVID_CA_get_latest.R") # Census tracts and agents SF_cts <- readRDS("data/processed/SF_cts_sf.rds") sf_pop <- readRDS("data/processed/SF_agents_processed.rds")
sim_hosps <- rbindlist(lapply(1:nsims, function(s){ df <- as.data.frame(sim_output[[i]][["epi_curve"]]) %>% filter(state == "Ih") %>% mutate(ndays = row_number(), Date = as.Date(ref_date+ndays), iter = i, bta = bta_sweeps[i]) return(df) })) sf_hosp %>% filter(Date > ref_date) %>% ggplot() + geom_col(aes(x = Date, y = HOSP_tot), col = "darkblue", fill = "blue", alpha = 0.4) + geom_line(data = sim_hosps, aes(x = Date, y = N, col = as.factor(bta), group = iter), alpha = 0.7) + theme_classic() + labs(x = "Date", y = "Hospitalizations", title = "Hospitalizations sim compared to observed", col = expression(beta))
sim_cases <- rbindlist(lapply(1:nsims, function(s){ df <- as.data.frame(sim_output[[i]][["linelist_tests"]]) %>% mutate(iter = i, bta = bta_sweeps[i]) return(df) })) tests_sum_by_date <- sim_cases %>% group_by(iter, Date, bta) %>% summarise(n_tests = n(), n_pos = sum(test_pos), n_Ih = sum(state == "Ih"), n_Im = sum(state %in% c("Im", "Imh")), n_Ipa = sum(state %in% c("Ip", "Ia")), per_pos = n_pos/n_tests) # Sums of testing data tests_sum_by_date %>% ggplot() + geom_col(data = sf_test, aes(x = Date, y = pos), fill = "grey50", alpha = 0.5) + geom_line(aes(x = as.Date(Date), y = n_pos, col = factor(bta), group = iter)) + theme_classic() + labs(y = "Positive Tests", title = "Confirmed cases compared to observed") tests_sum_by_date %>% ggplot() + geom_col(data = sf_test, aes(x = Date, y = pct), fill = "grey50", alpha = 0.5) + geom_line(aes(x = as.Date(Date), y = per_pos, col = factor(bta), group = iter)) + theme_classic() + labs(title = "Percent positive compared to observed")
sf_pop_sum <- sf_pop %>% group_by(geoid) %>% summarise(Pop = n()) SF_pop_cts <- SF_cts %>% left_join(sf_pop_sum, by = c("GEOID" = "geoid")) %>%
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.