Description Usage Arguments Value Deprecated Function References See Also Examples
Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.
| 1 2 3 4 5 6 7 8 | ols_step_backward_p(model, ...)
## Default S3 method:
ols_step_backward_p(model, prem = 0.3,
  details = FALSE, ...)
## S3 method for class 'ols_step_backward_p'
plot(x, model = NA, ...)
 | 
| model | An object of class  | 
| ... | Other inputs. | 
| prem | p value; variables with p more than  | 
| details | Logical; if  | 
| x | An object of class  | 
ols_step_backward_p returns an object of class "ols_step_backward_p".
An object of class "ols_step_backward_p" is a list containing the
following components:
| model | final model; an object of class  | 
| steps | total number of steps | 
| removed | variables removed from the model | 
| rsquare | coefficient of determination | 
| aic | akaike information criteria | 
| sbc | bayesian information criteria | 
| sbic | sawa's bayesian information criteria | 
| adjr | adjusted r-square | 
| rmse | root mean square error | 
| mallows_cp | mallow's Cp | 
| indvar | predictors | 
ols_step_backward() has been deprecated. Instead use ols_step_backward_p().
Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
Other variable selection procedures: ols_step_all_possible,
ols_step_backward_aic,
ols_step_best_subset,
ols_step_both_aic,
ols_step_forward_aic,
ols_step_forward_p
| 1 2 3 4 5 6 7 8 9 10 11 | # stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_p(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_p(model)
plot(k)
# final model
k$model
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.