View source: R/arx_forecaster.R
arx_fcast_epi_workflow | R Documentation |
arx_forecaster
workflowThis function creates an unfit workflow for use with arx_forecaster()
.
It is useful if you want to make small modifications to that forecaster
before fitting and predicting. Supplying a trainer to the function
may alter the returned epi_workflow
object (e.g., if you intend to
use quantile_reg()
) but can be omitted.
arx_fcast_epi_workflow(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()
)
epi_data |
An |
outcome |
A character (scalar) specifying the outcome (in the
|
predictors |
A character vector giving column(s) of predictor variables.
This defaults to the |
trainer |
A |
args_list |
A list of customization arguments to determine
the type of forecasting model. See |
An unfitted epi_workflow
.
arx_forecaster()
jhu <- covid_case_death_rates %>%
filter(time_value >= as.Date("2021-12-01"))
arx_fcast_epi_workflow(
jhu, "death_rate",
c("case_rate", "death_rate")
)
arx_fcast_epi_workflow(jhu, "death_rate",
c("case_rate", "death_rate"),
trainer = quantile_reg(),
args_list = arx_args_list(quantile_levels = 1:9 / 10)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.