========================================================
knitr::opts_chunk$set(echo=TRUE) #knitr::opts_knit$set(root.dir="")
## SET FILE PATHS FOR LOCAL INSTALL ## R libraries path #libraries_path = '/project/cnsbomic/Tools/R' ## Inherit paths #inherit_paths = "TRUE" # Loaded from Parameters.R ## IF NOT RUNNING WITH PIPELINE, SET WORKING DIRECTORY # working_dir <- PATH TO DATA FILES # setwd(working_dir)
suppressPackageStartupMessages({ library(OmicsNotebook) library(ggplot2) library(Biobase) }) BiocParallel::register(BiocParallel::MulticoreParam(workers=as.integer(Sys.getenv("NSLOTS",1)))) g=g.notebook.setup(param_file=params$param_file, override=params$override) # Source function file #sourceDirectory(file.path(gsub("src","R", notebook_dir)))
############################################ # The omicsList object is a list of lists. Each top level represents a different omics type. # # omicsList[[i]][[1]] "dataType" is the name of the omics set # omicsList[[i]][[2]] "dataFormat" is the data format of the omics set. # omicsList[[i]][[3]] "filename" is the filename/path for the omics data set. # omicsList[[i]][[4]] "RawData" is the raw data. # omicsList[[i]][[5]] "eSet" is the working eset object # omicsList[[i]][[6]] "topVariable" is the index of the most variable features # omicsList[[i]][[7]] "fit" is the limmaFit output of eBayes # omicsList[[i]][[8]] # omicsList[[i]][[9]] # omicsList[[i]][[10]] "siteNorm" is data normalized to the first data set by protein or gene # omicsList[[i]][[11]] # omicsList[[i]][[12]] "prebatch_eset" is the normalized but pre-batch corrected eset, if applicable # omicsList[[i]][[14]] is the un-normalized eset object - for debugging only # ############################################ # Import annotation file, data, and make eset objects g=g.make.omicsList(g)
knitr::opts_chunk$set(fig.path=paste(g$output_files_path,"/Images/", sep=""),messages=FALSE, fig.width=8, fig.height=12, knitr.duplicate.label="allow")
# Check if requirements for differential analysis are met if( length(g$contrastgroups)<2 ){ runDifferential <- FALSE; }
# Run enrichment based on intensity (most intense/least intense) if there's only one group. runEnrichment <- runDifferential if(length(g$contrastgroups)<=1){ if(gsea_section==TRUE){ enrichr_section<-FALSE; runEnrichment <- TRUE; g = g.abundance.gsea(g) } }
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.