metamed: metamed

View source: R/metamed.R

metamedR Documentation

metamed

Description

Estimates a pooled mediation proportion and total effects and outputs results in data frame

Usage

metamed(
  te,
  te_lb,
  te_ub = NULL,
  de,
  de_lb,
  de_ub = NULL,
  corr = 0.9855538,
  author,
  serv,
  stdserv,
  rr = "exp",
  pmodel = NULL,
  prec = 3,
  weight.prec = 2
)

Arguments

te

total effect estimates from each individual study

te_lb

lower bound of total effect confidence intervals

te_ub

upper bound of total effect confidence intervals

de

direct effect estimates from each individual study

de_lb

lower bound of direct effect confidence intervals

de_ub

upper bound of total effect confidence intervals

corr

correlation between direct

author

label of each individual study

serv

serving size of each individual study

stdserv

serving size of pooled total effect

rr

relative risk function, either "exponential" or identity"

pmodel

model used for back-calculated mediation proportion, either "fixed" or "random" effects model

prec

precision of pooled estimates

weight.prec

precision of weights on individual studies

Value

data frames of meta-analysis tables for mediation proportion and total effect, pooled mediation proportion and total effect results, and heterogeneity statistics

Examples

S <- 30
ST <- 10
SB <- 10
SD <- 10
set.seed(1)
beta.T <- rnorm(ST + SB, mean = 0.3, sd = 0.05)
set.seed(1)
beta.D <- rnorm(SD + SB, mean = 0.2, sd = 0.05)
set.seed(1)
var.beta.T <- rnorm(ST + SB, mean = 0.05, sd = 0.01)
set.seed(1)
var.beta.D <- rnorm(SD + SB, mean = 0.05, sd = 0.01)
df <- data.frame(beta.T = c(beta.T, rep(NA, SD)),
                 beta.D = c(rep(NA, ST), beta.D),
                 var.beta.T = c(var.beta.T, rep(NA, SD)),
                 var.beta.D = c(rep(NA, ST), var.beta.D))
res <- metamed(te = df$beta.T,
               te_lb = df$beta.T - qnorm(0.975) * sqrt(df$var.beta.T),
               de = df$beta.D,
               de_lb = df$beta.D - qnorm(0.975) * sqrt(df$var.beta.D),
               author = paste("Study", seq(1:S)),
               serv = 1,
               stdserv = 1,
               rr = "identity",
               pmodel = "fixed")

colleenchan/metamediate documentation built on Aug. 31, 2022, 1:31 a.m.