metamed | R Documentation |
Estimates a pooled mediation proportion and total effects and outputs results in data frame
metamed( te, te_lb, te_ub = NULL, de, de_lb, de_ub = NULL, corr = 0.9855538, author, serv, stdserv, rr = "exp", pmodel = NULL, prec = 3, weight.prec = 2 )
te |
total effect estimates from each individual study |
te_lb |
lower bound of total effect confidence intervals |
te_ub |
upper bound of total effect confidence intervals |
de |
direct effect estimates from each individual study |
de_lb |
lower bound of direct effect confidence intervals |
de_ub |
upper bound of total effect confidence intervals |
corr |
correlation between direct |
author |
label of each individual study |
serv |
serving size of each individual study |
stdserv |
serving size of pooled total effect |
rr |
relative risk function, either "exponential" or identity" |
pmodel |
model used for back-calculated mediation proportion, either "fixed" or "random" effects model |
prec |
precision of pooled estimates |
weight.prec |
precision of weights on individual studies |
data frames of meta-analysis tables for mediation proportion and total effect, pooled mediation proportion and total effect results, and heterogeneity statistics
S <- 30 ST <- 10 SB <- 10 SD <- 10 set.seed(1) beta.T <- rnorm(ST + SB, mean = 0.3, sd = 0.05) set.seed(1) beta.D <- rnorm(SD + SB, mean = 0.2, sd = 0.05) set.seed(1) var.beta.T <- rnorm(ST + SB, mean = 0.05, sd = 0.01) set.seed(1) var.beta.D <- rnorm(SD + SB, mean = 0.05, sd = 0.01) df <- data.frame(beta.T = c(beta.T, rep(NA, SD)), beta.D = c(rep(NA, ST), beta.D), var.beta.T = c(var.beta.T, rep(NA, SD)), var.beta.D = c(rep(NA, ST), var.beta.D)) res <- metamed(te = df$beta.T, te_lb = df$beta.T - qnorm(0.975) * sqrt(df$var.beta.T), de = df$beta.D, de_lb = df$beta.D - qnorm(0.975) * sqrt(df$var.beta.D), author = paste("Study", seq(1:S)), serv = 1, stdserv = 1, rr = "identity", pmodel = "fixed")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.