PC1VecFun: Calculate PC1 vector of found pattern

Description Usage Arguments Details Value Examples

View source: R/PC1VecFun.R

Description

The correlations found between the chosen geneset in a subset of samples can be summarised by looking at the first principal component (PC1) using principal coponent analysis (PCA).

Usage

1
PC1VecFun(top.gem, seed.sort, n)

Arguments

top.gem

Gene expression matrix containing only highly correlating genes

seed.sort

Ordering of samples according to strength of correlation

n

Number of samples to use in calculation of PC1

Details

PC1VecFun() takes a gene expression matrix and the sample ordering and fits a PC1 value to all the samples based on a PCA analysis done on the first n samples.

Value

PC1 value for each sample

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
data(CCLE_small)
data(Mitochondrial_genes)

mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]

set.seed(102)
CCLE.seed <- FindSeed(gem = CCLE.mito,
                      seed.size = 10,
                      iterations = 100,
                      messages = 1000)

CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)

# Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]

CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
                      seed.sort = CCLE.samp.sort,
                      n = 10)

CCLE.cor.vec <-  CVEval(gem.part = CCLE.mito,
                            gem.all = CCLE_small,
                            seed = CCLE.seed,
                            splits = 10)

CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
                         pc1 = as.numeric(CCLE.pc1))

CCLE.pc1 <- PC1Align(gem = CCLE_small, pc1 = CCLE.pc1,
                     cor.vec = CCLE.cor.vec ,
                     sort.order = CCLE.samp.sort,
                     bic =CCLE.bic)

CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]]))

compmedlab/MCbiclust documentation built on March 9, 2020, 12:14 a.m.