MK_dECA | R Documentation |
Equivalent Connected Area (ECA; if the area is used as attribute) or Equivalent Connectivity index (EC)
MK_dECA(
nodes,
attribute = NULL,
area_unit = "m2",
weighted = FALSE,
distance = list(type = "centroid", resistance = NULL),
threshold = NULL,
metric = "IIC",
probability = NULL,
distance_thresholds = NULL,
LA = NULL,
plot = FALSE,
parallel = NULL,
parallel_mode = 1,
write = NULL,
intern = TRUE
)
nodes |
|
attribute |
|
area_unit |
|
weighted |
|
distance |
A |
threshold |
|
metric |
A |
probability |
A |
distance_thresholds |
A |
LA |
|
plot |
|
parallel |
(optional, default = |
parallel_mode |
(optional, default = |
write |
|
intern |
|
Table with:
- Time: name of the time periods, name of the model or scenario (are taken from the name of the elements of the list of nodes or the plot argument)
- Max. Landscape attribute: maximum landscape attribute
- Habitat area,
- Distance threshold: it is usually a dispersal threshold associated with one or many species and it is set by the user.
- ECA: Equivalent Connected Area or Equivalent Connectivity
- Normalized_ECA (
- Normalized_ECA (
- dA: delta Area between times (percentage)
- dECA: delta ECA between times (percentage)
- rECA: relativized ECA (dECA/dA). According to Liang et al. (2021) "an rECA value greater than 1 indicates that habitat changes result in a
disproportionately large change in habitat connectivity, while a value lower than 1 indicates connectivity
changes due to random habitat changes (Saura et al. 2011; Dilts et al. 2016)".
- dA/dECA comparisons: comparisons between dA and dECA
- Type of change: Type of change using the dECAfun() and the difference between dA and dECA.
www.conefor.org
- Saura, S., Estreguil, C., Mouton, C., & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: Application to European forests (1990-2000). Ecological Indicators, 11(2), 407–416.
https://doi.org/10.1016/j.ecolind.2010.06.011
Herrera, L. P., Sabatino, M. C., Jaimes, F. R., & Saura, S. (2017). Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodiversity and Conservation, 26(14), 3465–3479.
https://doi.org/10.1007/s10531-017-1416-7
- Liang, J., Ding, Z., Jiang, Z., Yang, X., Xiao, R., Singh, P. B., ... & Hu, H. (2021). Climate change, habitat connectivity, and conservation gaps: a case study of four ungulate species endemic to the Tibetan Plateau. Landscape Ecology, 36(4), 1071-1087.
- Dilts TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, Esque TC (2016) Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change. Ecol Appl 26:1223–1237
## Not run:
library(Makurhini)
library(sf)
data("list_forest_patches", package = "Makurhini")
data("study_area", package = "Makurhini")
class(list_forest_patches)
Max_attribute <- unit_convert(st_area(study_area), "m2", "ha")
dECA_test <- MK_dECA(nodes= list_forest_patches, attribute = NULL, area_unit = "ha",
distance = list(type= "centroid"), metric = "PC",
probability = 0.05, distance_thresholds = 5000,
LA = Max_attribute, plot= c("1993", "2003", "2007", "2011"),
intern = TRUE)
dECA_test
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.