chorussell.simp | R Documentation |
chorussell
This function simplifies the list of candidates to be
considered in the optimization problem in the
chorussell
function. In particular, because
\mathbf{1}\left[\sqrt{n}\left(\hat{\theta}_{\rm lb}^b -
\hat{\theta}_{\rm lb}\right) \leq c_{\rm lb}\right]
\geq
\mathbf{1}\left[\sqrt{n}\left(\hat{\theta}^b_{\rm lb} -
\hat{\theta}_{\rm lb}\right) \leq c_{\rm lb} \quad \mathrm{ and } \quad
-c_{\rm ub} \leq \sqrt{n} \left(\hat{\theta}^b_{\rm ub} -
\hat{\theta}_{\rm ub} + \Delta\right)
\right],
the values of c_{\rm lb}
that satisfy
\frac{1}{B}\sum^B_{b=1} \mathbf{1}
\left[\sqrt{n}\left(\hat{\theta}_{\rm lb}^b -
\hat{\theta}_{\rm lb}\right) \leq c_{\rm lb}\right] < 1 - \alpha
will be removed from the set of the values under consideration. Similarly,
the list of c_{\rm ub}
that satisfy
\frac{1}{B}\sum^B_{b=1} \mathbf{1}
\left[- \sqrt{n}\left(\hat{\theta}_{\rm ub}^b -
\hat{\theta}_{\rm ub}\right) \leq c_{\rm lb}\right] < 1 - \alpha
will be removed from the set of the values under consideration.
chorussell.simp(lb.can1, lb.can2, ub.can1, ub.can2, progress)
lb.can1 |
The vector of values that corresponds to
|
lb.can2 |
The vector of values that corresponds to
|
ub.can1 |
The vector of values that corresponds to
|
ub.can2 |
The vector of values that corresponds to
|
progress |
The boolean variable for whether the progress bars should
be displayed. If it is set as |
Returns the list of updated candidates of lower bounds and upper bounds.
lb |
The updated list of candidates of lower bounds. |
ub |
The updated list of candidates of upper bounds. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.