.PCA_smallest_eig | R Documentation |
Calculates the smallest eigenvalue and its corresponding eigenvector of the covariance matrix of a filtered 3D coordinates data set, optionally centering the latter.
.PCA_smallest_eig(xyz_data, C, c, center = FALSE)
xyz_data |
A Nx3 numeric matrix-like object where each row represents the x, y, and z coordinates of a point in space. |
C |
A numeric vector indicating the group of each observation in
|
c |
A numeric value specifying the group to be processed. |
center |
Logical; if |
This is a translation of c++ code from the Meshlab Virtual Goniometer plugin developed by the AMAAZE consortium
A list containing two elements: smallest_eigenvalue
, the smallest
eigenvalue of the covariance matrix, and smallest_eigenvector
, the
corresponding eigenvector.
## Not run:
xyz_data <- matrix(rnorm(300), ncol = 3)
C <- sample(1:2, 100, replace = TRUE)
result <- Lithics3D:::.PCA_smallest_eig(xyz_data, C, 1)
print(result)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.