CI | R Documentation |
These functions compute the different terms required for tcor()
to compute the confidence
interval around the time-varying correlation coefficient. These terms are defined in Choi & Shin (2021).
calc_H(smoothed_obj)
calc_e(smoothed_obj, H)
calc_Gamma(e, l)
calc_GammaINF(e, L)
calc_L_And(e, AR.method = c("yule-walker", "burg", "ols", "mle", "yw"))
calc_D(smoothed_obj)
calc_SE(
smoothed_obj,
h,
AR.method = c("yule-walker", "burg", "ols", "mle", "yw")
)
smoothed_obj |
an object created with |
H |
an object created with |
e |
an object created with |
l |
a scalar indicating a number of time points. |
L |
a scalar indicating a bandwidth parameter. |
AR.method |
character string specifying the method to fit the autoregressive model used to compute |
h |
a scalar indicating the bandwidth used by the smoothing function. |
calc_H()
returns a 5 x 5 x t
array of elements of class numeric, which corresponds to \hat{H_t}
in Choi & Shin (2021).
calc_e()
returns a t
x 5 matrix of elements of class numeric storing the residuals, which corresponds to \hat{e}_t
in Choi & Shin (2021).
calc_Gamma()
returns a 5 x 5 matrix of elements of class numeric, which corresponds to \hat{\Gamma}_l
in Choi & Shin (2021).
calc_GammaINF()
returns a 5 x 5 matrix of elements of class numeric, which corresponds to \hat{\Gamma}^\infty
in Choi & Shin (2021).
calc_L_And()
returns a scalar of class numeric, which corresponds to L_{And}
in Choi & Shin (2021).
calc_D()
returns a t
x 5 matrix of elements of class numeric storing the residuals, which corresponds to D_t
in Choi & Shin (2021).
calc_SE()
returns a vector of length t
of elements of class numeric, which corresponds to se(\hat{\rho}_t(h))
in Choi & Shin (2021).
calc_H()
: computes the \hat{H_t}
array.
\hat{H_t}
is a component needed to compute confidence intervals;
H_t
is defined in eq. 6 from Choi & Shin (2021).
calc_e()
: computes \hat{e}_t
.
\hat{e}_t
is defined in eq. 9 from Choi & Shin (2021).
calc_Gamma()
: computes \hat{\Gamma}_l
.
\hat{\Gamma}_l
is defined in eq. 9 from Choi & Shin (2021).
calc_GammaINF()
: computes \hat{\Gamma}^\infty
.
\hat{\Gamma}^\infty
is the long run variance estimator, defined in eq. 9 from Choi & Shin (2021).
calc_L_And()
: computes L_{And}
.
L_{And}
is defined in Choi & Shin (2021, p 342).
It also corresponds to S_T^*
, eq 5.3 in Andrews (1991).
calc_D()
: computes D_t
.
D_t
is defined in Choi & Shin (2021, p 338).
calc_SE()
: computes se(\hat{\rho}_t(h))
.
The standard deviation of the time-varying correlation (se(\hat{\rho}_t(h))
) is defined in eq. 8 from Choi & Shin (2021).
It depends on D_{Lt}
, D_{Mt}
& D_{Ut}
, themselves defined in Choi & Shin (2021, p 337 & 339).
The D_{Xt}
terms are all computed within the function since they all rely on the same components.
Choi, JE., Shin, D.W. Nonparametric estimation of time varying correlation coefficient. J. Korean Stat. Soc. 50, 333–353 (2021). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s42952-020-00073-6")}
Andrews, D. W. K. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica: Journal of the Econometric Society, 817-858 (1991).
tcor()
rho_obj <- with(na.omit(stockprice),
calc_rho(x = SP500, y = FTSE100, t = DateID, h = 20, kernel = "box"))
head(rho_obj)
## Computing \eqn{\hat{H_t}}
H <- calc_H(smoothed_obj = rho_obj)
H[, , 1:2] # H array for the first two time points
## Computing \eqn{\hat{e}_t}
e <- calc_e(smoothed_obj = rho_obj, H = H)
head(e) # e matrix for the first six time points
## Computing \eqn{\hat{\Gamma}_l}
calc_Gamma(e = e, l = 3)
## Computing \eqn{\hat{\Gamma}^\infty}
calc_GammaINF(e = e, L = 2)
## Computing \eqn{L_{And}}
calc_L_And(e = e)
sapply(c("yule-walker", "burg", "ols", "mle", "yw"),
function(m) calc_L_And(e = e, AR.method = m)) ## comparing AR.methods
## Computing \eqn{D_t}
D <- calc_D(smoothed_obj = rho_obj)
head(D) # D matrix for the first six time points
## Computing \eqn{se(\hat{\rho}_t(h))}
# nb: takes a few seconds to run
run <- FALSE ## change to TRUE to run the example
if (in_pkgdown() || run) {
SE <- calc_SE(smoothed_obj = rho_obj, h = 50)
head(SE) # SE vector for the first six time points
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.