#' Merge the data comming from ICD 9 and ICD 10.
#'
#' @return A tibble with mortality data of Brazil.
#' @export
get_data <- function() {
birth_date <- cause <- death_city <- death_date <- education <- NULL
job <- locus <- marital <- residence_city <- sex <- color_race <- NULL
literacy <- age_unit <- age_value <- NULL
data_9 <- brazildatamortality::data_icd_9
data_10 <- brazildatamortality::data_icd_10
data_10 <- data_10 %>%
dplyr::select(birth_date, cause, death_city, death_date, education,
job, locus, marital, residence_city, sex, color_race,
literacy, age_unit, age_value)
data_9 <- data_9 %>%
dplyr::select(birth_date, cause, death_city, death_date, education,
job, locus, marital, residence_city, sex, age_unit,
age_value) %>%
dplyr::mutate(color_race = NA,
literacy = NA)
data_tb <- data_9 %>%
dplyr::bind_rows(data_10) %>%
dplyr::mutate(death_year = lubridate::year(death_date),
death_month = as.integer(lubridate::month(death_date)),
age = dplyr::case_when(
age_unit == "> 100 years" ~ Inf,
age_unit == "Years" ~ as.double(age_value),
age_unit == "Months" ~ as.double(age_value)/12,
age_unit == "Days" ~ as.double(age_value)/365,
age_unit == "Hours" ~ as.double(age_value)/(365 * 24),
age_unit == "Minutes" ~ as.double(age_value)/(365 * 24 * 60)
)) %>%
tidyr::drop_na(cause, death_date) %>%
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.