View source: R/trustworthiness.R
calcTrustworthinessFromRank | R Documentation |
The trustworthiness was proposed by Venna and Kaski, as a local quality
measure of a low-dimensional representation. The metric focuses on the
preservation of local neighborhoods, and compares the neighborhoods of points
in the low-dimensional representation to those in the reference data. Hence,
the trustworthiness measure indicates to which degree we can trust that the
points placed closest to a given sample in the low-dimensional representation
are really close to the sample also in the reference data set. The kTM
parameter defines the size of the neighborhoods to consider.
calcTrustworthinessFromRank(rankReference, rankLowDim, kTM)
rankReference |
N x N matrix, each row/column corresponding to one sample. The value of entry (i, j) represents the position of sample i in the ranking of all samples with respect to their distance from sample j, based on the reference (high-dimensional) observed values. The sample itself has rank 0. |
rankLowDim |
N x N matrix, each row/column corresponding to one sample. The value of entry (i, j) represents the position of sample i in the ranking of all samples with respect to their distance from sample j, based on the low-dimensional representation. The sample itself has rank 0. |
kTM |
The number of nearest neighbors. |
The trustworthiness value.
Charlotte Soneson
Venna J., Kaski S. (2001). Neighborhood preservation in nonlinear projection methods: An experimental study. In Dorffner G., Bischof H., Hornik K., editors, Proceedings of ICANN 2001, pp 485–491. Springer, Berlin.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.