2022-05-05
Link two data sets using tokens or words in common between them.
source('R/tokenify.R')
devtools::install_github("csps-efpc/TokenLink")
library(reclin)
library(tidyverse)
library(purrr)
theme_set(theme_minimal())
data_dir <- file.path('..','data')
orig_dat <-
data_dir |>
file.path('generated_dataset.csv') |>
read_csv() |>
replace_na(list(company_name = '',
address = '',
first_name = '',
last_name = '',
age = 0
))|>
mutate_all(as.character)
edited_dat <-
data_dir |>
file.path('generated_dataset_random_edits.csv') |>
read_csv() |>
replace_na(list(company_name = '',
address = '',
first_name = '',
last_name = '',
age = 0
)) |>
mutate_all(as.character)
bind_cols(orig_dat, edited_dat |> rename_all(\(x){paste0(x,"_edited")})) |>
{\(.)select(., order(colnames(.)))}() |>
sample_n(5) |>
knitr::kable(caption = 'original and edited data')
| address | address_edited | age | age_edited | company_name | company_name_edited | first_name | first_name_edited | last_name | last_name_edited | |:-------------------------------------------|:------------------------------------------------------------------------|:----|:-----------|:---------------------------------------|:----------------------------------|:-----------|:------------------|:-----------|:-------------------| | Sweet Alto United | rescoring Alto United | 58 | 58 | Artigianmobili Oxigen Edge | Artigianmobili Oxigen Edge | Noah | Noah | Fornicola | Fornicola | | Paso United | Paso United | 73 | 73 | And Limited | And Limited | Angelina | Angelina crested | Rossingnol | Rossingnol bricole | | Flanders Fort | Flanders Fort | 25 | 25 | Artimage Presentations Norway Business | Artimage Norway basinets Business | Noah | Noah | Isaacsen | Isaacsexn | | Caracas Oakland Emirates California States | Caracas Oakland Emirates lapsible California lapsible States | 30 | 30 | A0 Coaching Grupo Marketing | A0 Marketing cranches | Aaron | ranonl | Kinroth | Kinroth | | Maidstone Rico Louisiana States United | Maidstone thriftless Rico Louisiana thriftless States thriftless United | 36 | 36 | Satellite Law Solutions | labiodentals Law | Mila | Mila | Clover | Cloverw |
original and edited data
blocked_pairs <- reclin_pair_blocking(x = orig_dat,
y = edited_dat,
blocking_var = c('first_name', 'last_name'), #Block on Any of these Columns
token_types = c('company_name', 'address'), #Block on Any of these tokens
col_nms_x = c('company_name', 'address'), # Column Names
col_nms_y = c('company_name', 'address'), # Column Names
min_token_u_prob = 0.0000784) # min u_prob to consider blocking on
blocked_pairs |>
as_tibble()
## # A tibble: 37,341 x 2
## x y
## <int> <int>
## 1 1 71
## 2 1 134
## 3 1 158
## 4 1 235
## 5 1 275
## 6 1 289
## 7 1 355
## 8 1 422
## 9 1 452
## 10 1 454
## # ... with 37,331 more rows
# Compare pairs in Reclin using First and last name
p <- reclin::compare_pairs(blocked_pairs,
by = c('first_name', 'last_name'),
default_comparator = jaro_winkler(0.9))
m <- problink_em(p)
p <- score_simsum(p, var = "sim_sum")
p <- score_problink(p, model = m, var = "scores", type = 'all')
p |>
sample_n(5) |>
knitr::kable(caption = 'Show scores cenerated from Reclin')
| x | y | first_name | last_name | sim_sum | scores_mprob | scores_uprob | scores_mpost | scores_upost | scores_weight | |-----:|-----:|-----------:|----------:|----------:|-------------:|-------------:|-------------:|-------------:|--------------:| | 74 | 74 | 1 | 0.8148148 | 1.8148148 | 0.2943729 | 0.1335208 | 0.1900404 | 0.8099596 | 0.7905900 | | 212 | 378 | 0 | 0.4416667 | 0.4416667 | 0.0108210 | 0.1781999 | 0.0064209 | 0.9935791 | -2.8014156 | | 1337 | 267 | 1 | 0.5111111 | 1.5111111 | 0.4830224 | 0.3325376 | 0.1338860 | 0.8661140 | 0.3733101 | | 484 | 1446 | 1 | 0.4722222 | 1.4722222 | 0.5071787 | 0.3580214 | 0.1310089 | 0.8689911 | 0.3482705 | | 864 | 657 | 1 | 0.4259259 | 1.4259259 | 0.5359363 | 0.3883594 | 0.1280564 | 0.8719436 | 0.3220841 |
Show scores cenerated from Reclin
print(getwd())
## [1] "C:/Users/hswerdfe/projects/TokenLink/vignettes"
refined_p <-
refine_posterior(p = p,
x_dat = orig_dat,
y_dat = edited_dat,
weights_nm = 'scores_weight',
args_x = list(col_nms = c('company_name', 'address')),
args_y = list(col_nms = c('company_name', 'address')),
token_types = c('company_name', 'address')
)
refined_p |>
mutate(is_same = (x == y)) |>
mutate(delta_belief = posterior - priori) |>
ggplot(aes(y = delta_belief, x = priori, color = is_same )) +
geom_jitter(alpha = 0.05, width = 0.05, height = 0.05) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size = 1.25) +
scale_x_continuous(labels = scales::percent) +
scale_y_continuous(labels = scales::percent) +
labs(title = 'How much do the token columns change our belief in the Match?',
y = 'Change in Belief',
color = 'Actually the same') +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.