loglik_cDCC | R Documentation |
Loss function used in the cDCC robust estimation.
loglik_cDCC(par, Qb, s, sigma)
par |
Two-dimensional cDCC vector parameters |
Qb |
Qbar matrix (obtained from the Robust_cDCC function) |
s |
Devolatilized returns |
sigma |
Sigma parameter (which is computed inside the Robust_cDCC function). In a three-dimensional case this value is equal to 0.8309765. |
This function is used in the robust estimation. We can use it to evaluate the value of the robust cDCC loss function using several values of the vector parameters.
Returns the value of the loss function.
Carlos Trucíos
Boudt, Kris, Jon Danielsson, and Sébastien Laurent. Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting 29.2 (2013): 244-257.
Trucíos, Carlos, Luiz K. Hotta, and Esther Ruiz. Robust bootstrap densities for dynamic conditional correlations: implications for portfolio selection and value-at-risk. Journal of Statistical Computation and Simulation 88.10 (2018): 1976-2000.
# Estimating the parameters of the cDCC model in a robust way. cDCC = Robust_cDCC(toyexampledata[,1:3]) param = cDCC[[1]] Qbar = cDCC[[2]] vol1 = fitted_Vol(param[1:3],toyexampledata[,1]) vol2 = fitted_Vol(param[4:6],toyexampledata[,2]) vol3 = fitted_Vol(param[7:9],toyexampledata[,3]) e = matrix(c(toyexampledata[,1]/vol1[1:nrow(toyexampledata)], toyexampledata[,2]/vol2[1:nrow(toyexampledata)], toyexampledata[,3]/vol3[1:nrow(toyexampledata)]), ncol=3) loglik_cDCC(param[10:11],Qbar,e, 0.8309765)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.