library(devtools) library(dplyr) library(ggplot2) library(tidyr) library(ggrepel) library(lubridate) library(forcats) library(RColorBrewer)
outputFolder <- params$outputFolder minCellCount <- params$minCellCount cohortId <- params$cohortId cohortName <- params$cohortName databaseId <- params$databaseId time_window_for_interventions <- 365 connection <- params$connection cohortDatabaseSchema <- params$cohortDatabaseSchema cancerCohortDataTable <- getCancerDataSet(cohortDatabaseSchema, cohortId, connection) writeLines(paste("outputFolder = ", outputFolder, "\n", "minCellCount = ", minCellCount, "\n", "cohortId = ", cohortId, "\n", "cohortName = ", cohortName, "\n", "databaseId = ", databaseId, "\n", "time_window_for_interventions = ", time_window_for_interventions))
cancerSpecificVectors <- getVectorsForSpecificCancer(cohortId) interventionsVector <- cancerSpecificVectors$interventions drugVector <- cancerSpecificVectors$drugs_vector timeWindowForInterventions <- time_window_for_interventions df1 <- cancerCohortDataTable %>% filter(intervention_type %in% interventionsVector | generic_drug_name %in% drugVector) %>% filter(difftime(cohort_start_date, intervention_date) <= timeWindowForInterventions) %>% distinct(person_id, dx_year, intervention_date, intervention_type, age_group) %>% arrange(dx_year, person_id, intervention_date, intervention_type) %>% group_by(person_id, intervention_date) %>% slice(1) %>% arrange(person_id, intervention_date) %>% ungroup(intervention_date) %>% select(person_id, dx_year, intervention_type) # interventionsPivotWide distinct_lung_interventions <- df1 %>% distinct(person_id, dx_year, intervention_type) %>% pivot_wider(names_from = intervention_type, values_from = intervention_type) ###Appending distinct patient intervention field to table### interventions_by_pt <- distinct_lung_interventions %>% unite(distinct_interventions, 3:ncol(distinct_lung_interventions), sep = ' + ', na.rm = TRUE) augmentedCancerDataSet <- cancerCohortDataTable %>% left_join(interventions_by_pt, by = c('person_id')) %>% select(-c(dx_year.x)) %>% rename(dx_year = dx_year.y) #clear out previous run data if (file.exists(outputFolder)) { unlink(outputFolder, recursive = TRUE) } else { dir.create(outputFolder, recursive = TRUE) } cancerSpecificVectors
#duplicate of generic intervention plot but does some addition filtering (i.e., 2000 and multiple interventions in a day) df2 <- interventions_by_pt %>% arrange(person_id) %>% group_by(dx_year, distinct_interventions) %>% tally() %>% arrange(dx_year, desc(n)) %>% group_by(dx_year) %>% mutate(year_total = sum(n), pct = round(n*100/year_total)) %>% filter(dx_year >= 2000) file <- "percent_interventions_types_per_year_additional_filter" colourCount <- length(unique(interventions_by_pt$distinct_interventions)) getPalette <- colorRampPalette(brewer.pal(26, "Set3")) #plot the data z <- ggplot(df2, aes(fill = distinct_interventions, x = dx_year, y = pct)) + geom_bar(position = 'fill', stat = 'identity') + geom_text(aes(label = n), position = position_fill(vjust = .5), size = 2.5) + labs(x = 'Year', y = 'percent', title = 'Percent and Count distributions of interventions, by year') + theme(legend.position = 'bottom', legend.text = element_text(size = 3), legend.key.size = unit(.25, 'cm'), legend.title = element_text(size = 6)) + scale_fill_manual(values = getPalette(colourCount)) # ggsave(file.path(Folder, 'Plots/Plot 0 - Percent distribution of intervention types, by year.pdf')) saveAnalysis(x = z, data = df2, analysisFolder = outputFolder, fileName = file, cohortName, databaseId, minCellCount, fieldName = "n") z
# Percent distribution of intervention types, by year plot <- examineInterventionsPerYear(augmentedCancerDataSet %>% filter(dx_year >= 2000), cohortName, databaseId, outputFolder, minCellCount) plot
#plot 1 #counting distinct diagnoses by year plot <- examineDxPerYear(augmentedCancerDataSet, cohortName, databaseId, outputFolder, minCellCount) plot
#plot 2 #average age at diagnosis by year plot <- examineAvgAgeAtDx(augmentedCancerDataSet, cohortName, databaseId, outputFolder, minCellCount) plot
#average drug classes by year plot <- examineAvgNumDrugsByTreatmentClass(augmentedCancerDataSet, cohortName, databaseId, outputFolder, minCellCount) plot
## All the below plots are based on the index date of each patient and the earliest drug intervention for irrespective of the year the drug (intervention) was taken.
#plot 11c #first line chemotherapy in the adjuvant setting adjuvant_chemo_records <- cancerCohortDataTable %>% filter(neoadjuvant == '0', generic_drug_name %in% cancerSpecificVectors$chemo_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) plot <- examinePercentChemoForAdjuvantTherapy(adjuvant_chemo_records, cohortName, databaseId, outputFolder, minCellCount) plot
#same for chemotherapy drugs for neoadjuvant setting instead of adjuvant setting neoadjuvant_chemo_records <- cancerCohortDataTable %>% filter(neoadjuvant == '1', generic_drug_name %in% cancerSpecificVectors$chemo_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) plot <- examinePercentChemoForNeoAdjuvantTherapy(neoadjuvant_chemo_records, cohortName, databaseId, outputFolder, minCellCount) plot
#plot 5 - adjuvant checkpoint inhibitors adjuvant_checkpoint_records <- cancerCohortDataTable %>% filter(neoadjuvant == '0', generic_drug_name %in% cancerSpecificVectors$checkpoint_inhibitors) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line checkpoint therapy in the adjuvant setting, by year" file <- "percent_of_distribution_first_line_checkpoint_therapy_adjuvant" plot <- createPercentPlotForTherapy(adjuvant_checkpoint_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#same for chemotherapy drugs for neoadjuvant setting instead of adjuvant setting neoadjuvant_checkpoint_records <- cancerCohortDataTable %>% filter(neoadjuvant == '1', generic_drug_name %in% cancerSpecificVectors$checkpoint_inhibitors) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line checkpoint therapy in the neoadjuvant setting, by year" file <- "percent_of_distribution_first_line_checkpoint_therapy_neoadjuvant" plot <- createPercentPlotForTherapy(neoadjuvant_checkpoint_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#adjuvant VEGF positive_drugs adjuvant_vegf_records <- cancerCohortDataTable %>% filter(neoadjuvant == '0', generic_drug_name %in% cancerSpecificVectors$VEGF_positive_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line VEGF therapy in the adjuvant setting, by year" file <- "percent_of_distribution_first_line_vegf_therapy_adjuvant" plot <- createPercentPlotForTherapy(adjuvant_vegf_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#neoadjuvant VEGF positive_drugs neoadjuvant_vegf_records <- cancerCohortDataTable %>% filter(neoadjuvant == '1', generic_drug_name %in% cancerSpecificVectors$VEGF_positive_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line VEGF therapy in the neoadjuvant setting, by year" file <- "percent_of_distribution_first_line_vegf_therapy_neoadjuvant" plot <- createPercentPlotForTherapy(neoadjuvant_vegf_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#adjuvant EGFR positive_drugs adjuvant_egfr_records <- cancerCohortDataTable %>% filter(neoadjuvant == '0', generic_drug_name %in% cancerSpecificVectors$EGFR_positive_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line EGFR therapy in the adjuvant setting, by year" file <- "percent_of_distribution_first_line_egfr_therapy_adjuvant" plot <- createPercentPlotForTherapy(adjuvant_egfr_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#neoadjuvant EGFR positive_drugs neoadjuvant_vegf_records <- cancerCohortDataTable %>% filter(neoadjuvant == '1', generic_drug_name %in% cancerSpecificVectors$EGFR_positive_drugs) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line EGFR therapy in the neoadjuvant setting, by year" file <- "percent_of_distribution_first_line_egfr_therapy_neoadjuvant" plot <- createPercentPlotForTherapy(neoadjuvant_vegf_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
#adjuvant all systemic drugs for lung adjuvant_all_antineoplastics_records <- cancerCohortDataTable %>% filter(neoadjuvant == '0', generic_drug_name %in% cancerSpecificVectors$drugs_vector) %>% distinct(person_id, dx_year, generic_drug_name, intervention_date) %>% arrange(dx_year, person_id, intervention_date) %>% group_by(person_id) %>% slice(1) #plot the data title <- "Percent and count distributions of first line all antineoplastics adjuvant setting, by year" file <- "percent_of_distribution_first_line_all_lung_antineoplastics_adjuvant" plot <- createPercentPlotForTherapy(adjuvant_all_antineoplastics_records, title, file, cohortName, databaseId, minCellCount, outputFolder) plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.