Description Usage Arguments Value
viLDA.stoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
dat |
The data in long format. This is a data.frame with 3 columns: $doc = doc ids $word = word ids $N = counts An example of this format can be generated through viLDA::data_gen |
K |
Integer, the number of clusters |
d |
Intger, the number of documents (default = NULL) if NULL then this is imputed from the dat object |
v |
Integer, the size of the vocabulary (default = NULL) if NULL then this is also imputed from the dat object |
maxIterVal |
Integer, the maximum number of outer iterations for the global optima search (default = NULL) if NULL then this imputed to be log(v) |
alphaWords |
Float, the prior for the word-cluster distributions (default = 0.2) |
alphaTopics |
Float, the prior for the document-cluster distributions (default = 0.2) |
rho |
Float, the learning rate for the parameter updates (default = 0.001) |
tol |
Float, the tolerance for assessing convergence (default = 0.1) |
seed |
Float, the seed run at the begining (default = 19890418) |
... |
extra arguments can be passed, but they don't do anything yet 🛠|
maxVBIterVal |
Integer, the maximum number of inner iterations for the local optima search (default = NULL) if NULL then this is imputed to be ceiling(sqrt(v)) |
list([1],[2],[3])
[1]: k x v matrix of the expected values for the word-cluster probabilities
[2]: I x k matrix of the complete stored values of the parameters through all iterations
[3]: n length vector of the true value
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.