docs/RegressionVignette.md

title: "Estimation Approach to Statistical Inference" author: "Craig A. Wendorf" date: "2020-10-18" output: rmarkdown::html_vignette: keep_md: TRUE vignette: > %\VignetteIndexEntry{Multiple Regression Vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}

Estimation Approach to Statistical Inference

Multiple Regression Vignette

Three Variable Example Data

Score1 <- c(5,6,6,7,7,7,8,8,9)
Score2 <- c(6,7,8,8,7,9,7,9,9)
Outcome <- c(72,69,75,84,72,81,75,84,81)

RegressionData <- data.frame(Score1,Score2,Outcome)
RegressionData
##   Score1 Score2 Outcome
## 1      5      6      72
## 2      6      7      69
## 3      6      8      75
## 4      7      8      84
## 5      7      7      72
## 6      7      9      81
## 7      8      7      75
## 8      8      9      84
## 9      9      9      81

Analyses of a Regression Model

Overall Fit of Regression Model

pvaRegression(Outcome~Score1+Score2)
##          R    R2
## Model 0.82 0.672

Confidence Intervals for the Regression Coefficients

ciRegression(Outcome~Score1+Score2)
##                Est    SE     LL     UL
## (Intercept) 43.741 9.594 20.265 67.217
## Score1       0.538 1.415 -2.925  4.001
## Score2       3.792 1.586 -0.088  7.672
ciRegression(Outcome~Score1+Score2,conf.level=.99)
##                Est    SE     LL     UL
## (Intercept) 43.741 9.594  8.172 79.310
## Score1       0.538 1.415 -4.708  5.784
## Score2       3.792 1.586 -2.087  9.671

Plot of the Confidence Intervals for the Regression Coefficients

cipRegression(Outcome~Score1+Score2)

cipRegression(Outcome~Score1+Score2,conf.level=.99)

Significance Tests for the Regression Coefficients

nhstRegression(Outcome~Score1+Score2)
##                Est    SE     t     p
## (Intercept) 43.741 9.594 4.559 0.004
## Score1       0.538 1.415 0.380 0.717
## Score2       3.792 1.586 2.391 0.054


cwendorf/easi-dev documentation built on Oct. 23, 2020, 4:28 p.m.